Así trabajan los integrones, mecanismos genéticos que facilitan la resistencia a los antibióticos
La resistencia a los antibióticos, considerada como la crisis sanitaria más importante de este siglo, puede hacernos retroceder a la era pre-antibiótica, con millones de muertes al año por infecciones aparentemente sencillas. Una investigación de la Universidad Complutense de Madrid y de la Universidad de Oxford reconstruye por primera vez en tiempo real cómo actúan los integrones, unas plataformas genéticas que ayudan a la bacteria a resistir a los antibióticos.
Células de la bacteria patógena Pseudomonas aeruginosa utilizada en el estudio. / Sean Booth.
UCC-UCM, 6 de abril.- Los integrones son plataformas genéticas que permiten a las bacterias captar y coleccionar genes de resistencia a los antibióticos para esquivar los efectos de estos fármacos. Por primera vez, una investigación internacional de la Universidad Complutense de Madrid (UCM) y la Universidad de Oxford ha descrito en tiempo real cómo actúan estas plataformas.
“Los integrones son como pequeños cerebros bacterianos: permiten aprender muchas funciones, incluidas las de cómo resistir a antibióticos, y acumularlas como una memoria de bajo coste. En realidad, no se encuentran de forma natural en las bacterias clínicas, llegaron a ellas como consecuencia del uso masivo de antibióticos”, explica José Antonio Escudero, investigador del Departamento de Sanidad Animal y miembro del grupo Vigilancia Sanitaria Veterinaria de la UCM.
Una ventaja clave de los integrones es que son capaces de reducir el coste energético que supone para la bacteria hacerse resistente. La mayor parte del coste de cualquier gen viene de su expresión, es decir, de la fabricación de la proteína codificada en ese gen. Conforme un integron va captando nuevos genes, los que ya tenía van silenciándose hasta dejar de costar y “caer en el olvido”.
Los integrones llegan a las bacterias como consecuencia del uso masivo de antibióticos
En el trabajo, publicado en eLife, los investigadores describen el modus operandi de los integrones: cuando la bacteria es atacada por un antibiótico, el integrón cambia el orden de los genes, colocando de nuevo en primera posición los genes de resistencia adquiridos tiempo atrás. En otras palabras, cuando la bacteria lo necesita, los integrones pueden recordar las funciones aprendidas hace tiempo y que tenía silenciadas en su memoria para evitar su coste cuando el gen no se usa.
“La actividad de los integrones facilita enormemente el desarrollo de resistencias por un aumento de la expresión de genes de resistencia consecuencia de la reordenacion de estos genes dentro de la plataforma”, señala Escudero.
Del fotograma a la película completa
En el año 2015, el investigador de la UCM ya publicó que los integrones aportaban “adaptación bajo demanda" aunque el modelo de funcionamiento era fruto de observaciones independientes.
“Hasta ahora, nos imaginábamos la película del integrón por una serie de fotos que hemos visto. En esta investigación, hemos conseguido poner la película en marcha y ver al integrón en acción”, añade Escudero.
En esta ocasión, y como parte de la tesis de Celia Souque de la Universidad de Oxford, los investigadores han hecho evolución experimental en el laboratorio con una bacteria patógena en la que han introducido un integrón con tres genes de resistencia. El último está silenciado por estar en tercera posición y la bacteria es sensible a ese antibiótico, pero confiere resistencia si se recoloca en primera posición del integrón.
Cuando la bacteria es atacada por un antibiótico, el integrón cambia el orden de los genes, colocando en primera posición los de resistencia
Como control, los investigadores utilizaron una bacteria idéntica que contenía los mismos tres genes de resistencia, pero cuyo integrón no funcionaba y no podía reordenarlos.
Sometieron a poblaciones independientes de ambas bacterias a un tratamiento con concentraciones crecientes del antibiótico, y vieron que sobrevivían más poblaciones cuando el integrón funcionaba. Secuenciaron los genomas de estas poblaciones a diferentes tiempos del experimento para ver los cambios genéticos que han permitido a la bacteria sobrevivir a cantidades altas de antibiótico y cómo el integrón colocaba en primera posición el gen de resistencia efectivo.
La importancia de conocer estos mecanismos
“Nuestro trabajo es especial porque mezcla la evolución experimental y secuenciación masiva con un gran dominio de edición genética necesaria para crear integrones de diseño y meterlos en un plásmido natural. Es decir que recreamos condiciones naturales pero lo diseñamos para explorar la pregunta que queremos”, reconoce Escudero.
En la actualidad, los tratamientos contra las infecciones bacterianas son menos eficaces que los de nuestros padres o abuelos en los años 60 o 70, cuando las bacterias multirresistentes estaban empezando a aparacer pero eran poco prevalentes. Conocer estos mecanismos de resistencia antimicrobiana cobra cada vez más importancia. Transplantes, quimioterapia o algunas cirugías corrientes no serían posibles sin la acción de los antibióticos.
“Este paso atrás en nuestra capacidad de tratar infecciones puede representar un enorme retroceso para la medicina en general”, concluye el investigador de la UCM.
Referencia bibliográfica: Souque et al. “Integron activity accelerates the evolution of antibiotic resistance”. eLife 2021. DOI: 10.7554/eLife.62474.
Oficina de Transferencia de Resultados de Investigación (OTRI)
Universidad Complutense de Madrid
uccucm@ucm.es - Tlf.: 617691087
Información relacionada
: Declaraciones de José Antonio Escudero a la Unidad de Cultura Científica. / María Marín