Institutos Universitarios

Rutwig Campoamor Stursberg

Titular de Universidad (Associate Professor)
Department of Algebra, geometry and topology
School of Mathematical Sciences
Complutense University of Madrid
910183 Topología de variedades, topología combinatoria y dinámica topológica

 

 

 

Bio

Ph.D. in Mathematics in 2000. Postdoctoral researcher at the Université de Haute Alsace (2002-2004). Academic visitor of the Centre de Recherches Mathématiques (Montréal, Canada) in 2006, Universidad Nacional de Rosario (Argentina) in 2007, Instituto de Astronomía y Física del Espacio (IAFE, UBA, Buenos Aires, Argentina) in 2008 and 2010. Short periodical research stays at the Czech Technical University in Prague, Université de Strasbourg and Institut Pluridisciplinaire Hubert Curien (CNRS), among others.

External evaluator for the Czech Science Foundation (Czech Republic), National Center of Science and Technology (Republic of Kazakhstan), Natural Sciences and Engineering Research Council of Canada and National Science Centre (Warsaw, Poland).

Coorganizer of the Conference Series “International Conference on Geometry, Integrability and Quantization” annualy held in Varna (Bulgaria), sponsored by the Bulgarian Academy of Sciences. 

 

Research interests

Real and complex Lie algebras and groups. Differential forms and distribution theory. Contractions and deformations. Casimir invariants. Symmetries in Physics. Representation theory. Lie Group Analysis of differential equations. Lagrangian and Hamiltonian formalism in Classical Mechanics. Integrable and superintegrable systems. Symmetry-conditioned perturbation theory. Inverse problems in Dynamics. Supersymmetry

 

Latest Publications

  • R. Monjo, Á. Rodríguez-Abella, R. Campoamor-Stursberg. From colored gravity to electromagnetism. General Relativity and Gravitation, 56. 2024. DOI: 10.1007/s10714-024-03307-8.
  • R. Campoamor-Stursberg, A. Marrani, M. Rausch de Traubenberg. An infinite–rank Lie algebra associated to SL(2, R) and SL(2, R)/U(1). Journal of Mathematical Physics, 65, (8). 2024. 10.1063/5.0223755.
  • S. G. Low, R. Campoamor-Stursberg. Jacobi group symmetry of Hamilton's mechanics. Journal of Geometry and Physics, 203. 2024. 10.1016/j.geomphys.2024.105249.
  • R. Campoamor-Stursberg, D. Latini, I. Marquette, Y-Z. Zhang. Polynomial algebras from commutants: Classical and Quantum aspects of A3. Journal of Physics: Conference Series, 2667 (1). 2023. DOI: 10.1088/1742-6596/2667/1/012037.
  • E. Fernández-Saiz, R. Campoamor-Stursberg, F. J. Herranz. Generalized time-dependent SIS Hamiltonian models: Exact solutions and quantum deformations. Journal of Physics: Conference Series, 2667 (1). 2023. DOI: 10.1088/1742-6596/2667/1/012083.
  • R. Campoamor-Stursberg, I. Marquette. Decomposition of Enveloping Algebras of Simple Lie Algebras and their Related Polynomial Algebras. Journal of Lie Theory, 34 (1), 17–40. 2024. Link: https://www.heldermann.de/JLT/JLT34/JLT341/jlt34002.htm.
  • R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz. Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations. AIMS Mathematics, 8 (10), 24025-24052. 2023. DOI: 10.3934/math.20231225.
  • R. Campoamor-Stursberg, D. Latini, I. Marquette, Y.-Z Zhang. Polynomial algebras from Lie algebra reduction chains g ⊃ g′. Annals of Physics, 459. 2023 DOI: 10.1016/j.aop.2023.169496.
  • R. Monjo, R. Campoamor-Stursberg. Geometric perspective for explaining Hubble tension: theoretical and observational aspects. Classical and Quantum Gravity, 40 (19). 2023. https://doi.org/10.1088/1361-6382/aceacc
  • R. Campoamor-Stursberg, F. O. García. Construction of Rank-One Solvable Rigid Lie Algebras with Nilradicals of a Decreasing Nilpotence Index. Axioms, 12 (8), article No. 754. 2023. https://doi.org/10.3390/axioms12080754
  • R. Campoamor-Stursberg, M. Rausch De Traubenberg. Vertex operator for generalized Kac-Moody algebras associated to the two-sphere and the two-torus. Modern Physics Letters A. 2023, 37, 37&38. https://doi.org/10.1142/S021773232250239X
  • R. Campoamor-Stursberg, M. Rausch De Traubenberg. Fermion realizations of generalized Kac-Moody and Virasoro algebras associated to the two-sphere and the two-torus. Modern Physics Letters A. 2023, 37, 39&40. https://doi.org/10.1142/S0217732322502406
  • R. Campoamor-Stursberg, D. Latini, I. Marquette, Y. Z. Zhang. Algebraic (super-)integrability from commutants of subalgebras in universal enveloping algebras. Journal of Physics A: Mathematical and Theoretical, 2023. 54(4). https://doi.org/10.1088/1751-8121/acb576
  • R. Campoamor-Stursberg, F. Oviaño García. Computer-Aided Analysis of Solvable Rigid Lie Algebras with a Given Eigenvalue Spectrum. Axioms, 2022, 11 (9), art. no. 442. https://doi.org/10.3390/axioms11090442
  • M.C. Nucci, R. Campoamor-Stursberg. Minimally superintegrable systems in flat three-dimensional space are also linearizable. Journal of Mathematical Physics. 2022, 63(12). https://doi.org/10.1063/5.0086431
  • R. Campoamor-Stursberg, M. de Montigny, M. Rausch. An overview of generalised Kac-Moody algebras on compact real manifolds. Journal of Geometry and Physics, 2022, vol. 180, article number 104624. https://doi.org/10.1016/j.geomphys.2022.104624
  • R. Campoamor-Stursberg. On some algebraic formulations within universal enveloping algebras related to superintegrability, Acta Polytechnica, 2022, 62(1), 16–22, https://doi.org/10.14311/AP.2022.62.0016
  • R. Campoamor-Stursberg, I. Marquette. Quadratic algebras as commutants of algebraic Hamiltonians in the enveloping algebra of Schrödinger algebras. Annals of Physics. 2022, 437, Article number 168694. https://doi.org/10.1016/j.aop.2021.168694
  • R. Campoamor-Stursberg. Lie-symmetry analysis of the Painlevé-Gambier classification of second-order scalar ordinary differential equations. In Advances in Mathematics Research. 2021, 29, 77 - 131. ISBN: 978-1-53619-759-4. Link.
  • R. Campoamor-Stursberg. On some structural properties of semidirect sums of so(3) and Abelian lie algebras. Geometry, Integrability and Quantization. 2021, 22, 88 - 106. 
    https://doi.org/10.7546/giq-22-2021-88-106
  • A. Ballesteros, R. Campoamor-Stursberg, E. Fernández-Saiz, F. J. Herranz, J. De Lucas. Poisson-Hopf deformations of Lie-Hamilton systems revisited: Deformed superposition rules and applications to the oscillator algebra. Journal of Physics A: Mathematical and Theoretical. 2021, 54, 20, Article number abf1db. https://doi.org/10.1088/1751-8121/abf1db
  • R. Campoamor-Stursberg, I. Marquette. Hidden symmetry algebra and construction of quadratic algebras of superintegrable systems. Annals of Physics. 2021, 424, 168378. https://doi.org/10.1016/j.aop.2020.168378
  • R. Campoamor-Stursberg, F. Oviaño. Algorithmic construction of solvable rigid Lie algebras determined by generating functions. Linear and Multilinear Algebra. 2020. https://doi.org/10.1080/03081087.2020.1720577
  • R. Campoamor-Stursberg. Trace formulas for the Casimir operators of the unextended Schrödinger algebra S(N). Journal of Mathematical Physics. 2020, 61(4), 043508. https://doi.org/10.1063/1.5141091
  • R. Campoamor-Stursberg. The method of virtual copies and contractions of simple Lie algebras. Journal of Physics Conference Series. 2020, 1612, 012006. https://doi.org/10.1088/1742-6596/1612/1/012006
  • R. Campoamor-Stursberg. Lie-Point symmetries preserved by derivative. Geometry, Integrability and Quantization. 2020, 21, 75-88. https://doi.org/10.7546/giq-21-2020-75-88
  • R. Monjo, R. Campoamor-Stursberg. Lagrangian density and local symmetries of inhomogeneous hyperconical universes. Classical and Quantum Gravity. 2020, 37 (20), 205015. https://doi.org/10.1088/1361-6382/abadaf
  • R. Campoamor-Stursberg, F. O. García. Some features of rank one real solvable cohomologically rigid Lie Algebras with a Nilradical contracting onto the model filiform lie algebra Qn (2019) Axioms, 8 (1), art. no. 10. DOI: https://doi.org/10.3390/axioms8010010

Contact details

rutwig@ucm.es
Personal Webpage

 

R. Campoamor-Stursberg, M. Rausch de Traubenberg. Group Theory in Physics. A Practitioner's Guide. World Scientific, 2018.

ISBN: 978-981-3273-60-3 (hardcover)  

ISBN: 978-981-3273-62-7 (ebook)