María Jaenada Malagón
Becarios (Predoctoral Fellow)
Department of Statistics and Operations Research
School of Mathematical Sciences
Complutense University of Madrid
Procedimientos Inferenciales Basados en Divergencias
Bio
I am currently a Predoctoral Researcher at the Department of Statistics and Operational Research at Universidad Complutense de Madrid, supported by an FPU Grant. I got my bachelor’s degrees in mathematics and mathematics and statistics at Universidad Complutense de Madrid, where I later obtained a M.Sc. in computational statistics.
Research interests
My research interests include information theory, generalized regression models, high dimensional data, reliability analysis and robust statistics.
Latest Publications
- A. Felipe, M. Jaenada, P. Miranda, L. Pardo. Robust estimators for the log-logistic model based on ranked set sampling. Japanese Journal of Statistics and Data Science. 2024. 10.1007/s42081-024-00272-z.
- N. Balakrishnan, M. Jaenada, L. Pardo. (2024) Robust inference for an interval-monitored step-stress experiment with competing risks for failure with an application to capacitor data. Computers & Industrial Engineering. 197. 10.1016/j.cie.2024.110536.
- M. Jaenada, P. Miranda, L. Pardo, K. Zografos. An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances. Entropy, 25 (5), 713. 2023. https://doi.org/10.3390/e25050713
- N. Balakrishnan, M. Jaenada, L. Pardo. (2023) Non-destructive one-shot device test under step-stress experiment with lognormal lifetime distribution. Journal of Computational and Applied Mathematics. Volume 437. https://doi.org/10.1016/j.cam.2023.115483
- N. Balakrishnan, E. Castilla, N. Martin, L. Pardo. Power divergence approach for one-shot device testing under competing risks. Journal of Computational and Applied Mathematics, 2023, 419, Article number 114676. https://doi.org/10.1016/j.cam.2022.114676
- A. Felipe, M. Jaenada, P. Miranda, L. Pardo. Restricted Distance-Type Gaussian Estimators Based on Density. Power Divergence and Their Applications in Hypothesis Testing. Mathematics. 2023, 11, 1480 480. https://doi.org/10.3390/math11061480
- N. Balakrishnan, E. Castilla, M. Jaenada, L. Pardo. Robust inference for nondestructive one-shot device testing under step-stress model with exponential lifetimes. Quality and Reliability Engineering International, 2023. https://doi.org/10.
48550/arXiv.2204.11560 - E. Castilla, M. Jaenada, N. Martín, L. Pardo. Robust approach for comparing two dependent normal populations through Wald-type tests based on Rényi’s pseudodistance estimators. Statistics and Computing, 2022, 32(6), 100. https://doi.org/10.3390/e24050616
- A. Ghosh, M. Jaenada, L. Pardo. Classification of COVID19 Patients Using Robust Logistic Regression. Journal of Statistical Theory and Practice, 2022, 16(4), 67. https://doi.org/10.1007/s42519-022-00295-3
- E. Castilla, M. Jaenada, L. Pardo. Estimation and testing on independent not identically distributed observations based on Rényi’s pseudodistances. IEEE Transactions on Information Theory. https://doi.org/10.1109/TIT.2022.3158308
- M Jaenada, P Miranda, L Pardo, Robust Test Statistics Based on Restricted Minimum Rényi’s Pseudodistance Estimators, Entropy, 2022, 24(5), 616. https://doi.org/10.3390/
e24050616 - M. Jaenada, L. Pardo. Robust Statistical Inference in Generalized Linear Models Based on Minimum Renyi’s Pseudodistance Estimators. Entropy. 2022, 24(1), 123. https://doi.org/10.3390/e24010123