Matemáticas
Grado y Doble Grado. Curso 2023/2024.
TOPOLOGÍA ALGEBRAICA - 800605
Curso Académico 2023-24
Datos Generales
- Plan de estudios: 0803 - GRADO EN MATEMÁTICAS (2009-10)
- Carácter: Optativa
- ECTS: 6.0
SINOPSIS
COMPETENCIAS
Generales
Estudio de la topología de los espacios con herramientas algebraicas.
Transversales
Conexión entre topología, geometría y álgebra.
Específicas
Cálculo de grupos fundamentales y de grupos de homología de diversos espacios.
ACTIVIDADES DOCENTES
Clases teóricas
Se llevarán a cabo a cargo del profesor.
Clases prácticas
Algunas de las clases prácticas de las clases prácticas se puede dedicara para seminario. El profesor propondrá ejercicios a los alumnos, que deben realizar y en su caso entregar en un plazo prefijado. Algunos de los problemas serán corregidos en las clases prácticas, con participación activa por parte de los alumnos.
Presentaciones
Los alumnos, si hay disponibilidad de tiempo, podrían exponer algunos temas relacionados con el tronco central de la asignatura, elaborados por ellos en grupos pequeños.
Presenciales
6
Semestre
1
Breve descriptor:
Estudio de la topología de los espacios con herramientas algebraicas (grupo fundamental y homología).
Requisitos
Un curso básico de topología general.
Conocimientos básicos de estructuras algebraicas (grupos y grupos abelianos).
Conocimientos básicos de estructuras algebraicas (grupos y grupos abelianos).
Objetivos
Distinguir espacios topológicos mediante técnicas de topología algebraica: homología y homotopía (grupo fundamental). Teorema de clasificación de las superficies compactas. Aplicaciones de la topología algebraica, como el teorema del punto fijo de Brouwer, el teorema de Borsuk-Ulam, etc.
Contenido
- Clasificación de superficies compactas.
- Grupo fundamental.
- Espacios recubridores.
- Homología.
Evaluación
La calificación se apoya esencialmente, al menos en un 80%, en el resultado del examen final de la asignatura pero se tendrá en cuenta la cantidad y calidad de la participación de cada uno de los alumnos en el desarrollo del curso.
Bibliografía
A. Hatcher, Algebraic Topology, Cambridge University Press , 2002
V. Muñoz y J. Madrigal, Topologia Algebraica, Sanz y Torres, 2015.
J. Lee, Introduction to Topological Manifolds GTM. Springer 2011
J. R. Munkres, Topology Prentice Hall 2000
V. Muñoz y J. Madrigal, Topologia Algebraica, Sanz y Torres, 2015.
J. Lee, Introduction to Topological Manifolds GTM. Springer 2011
J. R. Munkres, Topology Prentice Hall 2000
Estructura
Módulos | Materias |
---|---|
CONTENIDOS AVANZADOS EN MATEMÁTICAS PURA Y APLICADA I | GEOMETRÍA Y TOPOLOGÍA AVANZADAS |
Grupos
Clases teóricas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 04/09/2023 - 15/12/2023 | LUNES 12:00 - 13:00 | B12 | MANUEL ALONSO MORON |
JUEVES 12:00 - 13:00 | B12 | MANUEL ALONSO MORON |
Clases prácticas | ||||
---|---|---|---|---|
Grupo | Periodos | Horarios | Aula | Profesor |
Grupo único | 04/09/2023 - 15/12/2023 | MARTES 12:00 - 13:00 | B12 | MANUEL ALONSO MORON |
VIERNES 12:00 - 13:00 | B16 | MANUEL ALONSO MORON |