Grupos de investigación

Gabriel Chiodo

2024

Vattioni, S., A. Stenke, B. Luo, G. Chiodo, T. Sukhodolov, E. Wunderlin, and T. Peter (2024): Importance of microphysical settings for climate forcing by stratospheric SO2 injections as modelled by SOCOL-AERv2, Geoscientific Model Development, DOI:10.5194/gmd-17-4181-2024

Brodowski, C., et al. (including G. Chiodo) (2024): Analysis of the global atmospheric background sulfur budget in a multi-model framework, Atmospheric Chemistry and Physics, DOI:10.5194/acp-24-5513-2024

Wunderlin, E.,G.Chiodo, T.Sukhodolov, S.Vattioni, D. Visioni and S. Tilmes (2024): Side effects of sulfur-based geoengineering due to absorptivity of sulfate aerosols, Geophysical Research Letters, DOI:10.1029/2023GL107285

Orbe, C., et al. (including G. Chiodo) (2024):Coupled Stratospheric Ozone and Atlantic Meridional Overturning Circulation Feedbacks on the Northern Hemisphere Midlatitude Jet Response to 4xCO2, Journal of Climate, DOI:10.1175/JCLI-D-23-0119.1

2023

Vattioni, S., et al. (including G. Chiodo) (2023): Chemical impact of stratospheric alumina particle injection for solar radiation modification and related uncertainties, Geophysical Research Letters, DOI:10.1029/2023GL105889

Chiodo, G., M. Friedel, S. Seeber, A. Domeisen, A. Stenke, T. Sukhodolov and F. Zilker (2023):The influence of future changes in springtime Arctic ozone on stratospheric and surface climate, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-10451-2023

Zilker, F., T. Sukhodolov,G. Chiodo, et al. (2023):Stratospherically induced tropospheric circulation changes under the extreme conditions of the No-Montreal-Protocol scenario, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-13387-2023

Józefiak, I., T. Sukhodolov, T. Egorova,G. Chiodo, T. Peter, H. Rieder, J. Sedlacek, A. Stenke and E. Rozanov (2023): Stratospheric dynamics modulates ozone layer response to molecular oxygen variations, Front. Earth Sci. 11:1239325, DOI:10.3389/feart.2023.1239325

Friedel, M., G. Chiodo, et al. (2023): Weakening of springtime Arctic ozone depletion with climate change, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-10235-2023

Janoski, T., M. Previdi, G. Chiodo, K. Smith and L.M. Polvani (2023): Ultrafast Arctic Amplification and Its Governing Mechanisms, Environmental Research - Climate, DOI:10.1088/2752-5295/ace211

Nowack, P., P. Ceppi, S. Davis,G. Chiodo, et al. (2023): Response of stratospheric water vapour to warming constrained by satellite observations, Nature Geoscience, DOI:10.1038/s41561-023-01183-6

Visioni, D., et al. (including G. Chiodo) (2023): Opinion: The Scientific and Community-Building Roles of the Geoengineering Model Intercomparison Project (GeoMIP) - Past, Present, and Future, Atmospheric Chemistry and Physics, DOI:10.5194/acp-23-5149-2023

Polvani, L., J. Keeble , A. Banerjee , R. Checa-Garcia,G. Chiodo, H. Rieder, and K. Rosenlof (2023): No evidence of worsening Arctic springtime ozone losses over the 21st century, Nature Communications, DOI:10.1038/s41467-023-37134-3

Kult-Herdin, J., T. Sukhodolov,G. Chiodo, R. Checa-Garcia, and H. Rieder (2023): The impact of different CO2 and ODS levels on the mean state and variability of the springtime Arctic stratosphere, Environmental Research Letters, DOI:10.1088/1748-9326/acb0e6

2022

Friedel, M.,G. Chiodo, A. Stenke, D. Domeisen, and T. Peter (2022): Effects of Arctic ozone on the stratospheric spring onset and its surface impact, Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-13997-2022

Bergner, N., M. Friedel, D. Domeisen, D. Waugh, and G. Chiodo(2022): Exploring the link between austral stratospheric polar vortex anomalies and surface climate in chemistry-climate models, Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-13915-2022

Friedel, M.,G. Chiodo, A. Stenke, D. Domeisen, S. Fueglistaler, J. Anet, and T. Peter (2022): Springtime Arctic ozone depletion forces Northern Hemisphere climate anomalies, Nature Geoscience, DOI:10.1038/s41561-022-00974-7supplementary material,Nature Research Briefing 

Press Release by ETH Zurich: Ozone depletion over North Pole produces weather anomalies, also available in German here

Chiodo, G., and L.M. Polvani (2022): New insights on the radiative impacts of ozone-depleting substances, Geophysical Research Letters, DOI:10.1029/2021GL096783 supplementary material

Weisenstein, D., et al. (including G. Chiodo) (2022): A Model Intercomparison of Stratospheric Solar Geoengineering by Accumulation-Mode Sulfate Aerosols, Atmospheric Chemistry and Physics, DOI:10.5194/acp-22-2955-2022

Yu-Chiao, et al. (including G. Chiodo) (2022): Stronger Arctic Amplification from Ozone-Depleting Substances than from Carbon Dioxide, Environmental Research Letters, DOI:10.1088/1748-9326/ac4a31

2021

Sukhodolov, T., et al. (including G. Chiodo) (2021): Atmosphere-Ocean-Aerosol-Chemistry-Climate Model SOCOLv4.0: description and evaluation, Geoscientific Model Development, DOI:10.5194/gmd-14-5525-2021

Keeble, J., et al. (including G. Chiodo) (2021): Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850-2100", Atmospheric Chemistry and Physics, DOI:10.5194/acp-21-5015-2021

2020

Oehrlein, J.,G.Chiodo, and L.M.Polvani (2020): The effect of interactive ozone chemistry on weak and strong stratospheric polar vortex events, Atmospheric Chemistry and Physics, DOI:10.5194/acp-20-10531-2020supplementary material-- download data-set --

Previdi, M., T.Janoski, G. Chiodo, K.Smith, and L.M.Polvani (2020): Arctic Amplification: a Rapid Response to Radiative Forcing, Geophysical Research Letters, DOI:10.1029/2020GL089933 supplementary material

      Paper highlighted in Science: Rapid response, Science, Vol. 369, Issue 6509, pp. 1336

Ball, W., G.Chiodo, M.Abalos, J.Alsing and A.Stenke (2020): Inconsistencies between chemistry climate model and observed lower stratospheric trends since 1998, Atmospheric Chemistry and Physics, DOI:10.5194/acp-20-9737-2020supplementary material

Polvani, L., M.Previdi, M.England,G.Chiodo and K.Smith (2020): Substantial twentieth-century Arctic warming caused by ozone-depleting substances, Nature Climate Change, DOI:10.1038/s41558-019-0677-4.

2019

Chiodo, G., and L.M.Polvani (2019): The response of the ozone layer to quadrupled CO2concentrations: implications for climate, Journal of Climate, DOI:10.1175/JCLI-D-19-0086.1

Oehrlein, J.,G.Chiodo, and L.M.Polvani (2019): Separating and quantifying the distinct impacts of El Niño and stratospheric sudden warmings on North Atlantic and Eurasian wintertime climate variability, Atmospheric Science Letters, DOI:10.1002/asl.923

Banerjee, T.,G.Chiodo, M.Previdi, M.Ponater, A.Conley and L.M.Polvani (2019): Stratospheric water vapor: an important climate feedback, Climate Dynamics, DOI:10.1007/s00382-019-04721-4 supplementary material

Rieder, H., G.Chiodo, J.Fritzer, C.Wienerroither and L.M.Polvani (2019): Is interactive ozone chemistry important to represent polar cap stratospheric temperature variability in Earth-System Models?, Environmental Research Letters, DOI:10.1088/1748-9326/ab07ff

Chiodo, G., J.Oehrlein, L.M.Polvani, J.Fyfe and A.K.Smith (2019): Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation, Nature Geoscience, DOI:10.1038/s41561-018-0293-3 supplementary material

2018

Chiodo, G., L.M.Polvani, D.R.Marsh, A.Stenke, W.Ball, E.Rozanov, S.Muthers, and K.Tsigaridis (2018):The response of the ozone layer to quadrupled CO2concentrations, Journal of Climate, DOI:10.1175/JCLI-D-17-0492.1supplementary material

Smith, K., G.Chiodo, M.Previdi, and L.M.Polvani (2018): No surface cooling over Antarctica from the negative greenhouse effect associated with instantaneous quadrupling of CO2concentrations, Journal of Climate, DOI:10.1175/JCLI-D-17-0418.1 supplementary material

2017

Chiodo, G., L.M. Polvani, and M.Previdi (2017):Large increase in incident shortwave radiation due to the ozone hole offset by high climatological albedo over Antarctica, Journal of Climate, 30, 4883-4890, DOI:10.1175/JCLI-D-16-0842.1

Chiodo, G., and L.M. Polvani (2017):Reduced Southern Hemispheric circulation response to quadrupled CO2due to stratospheric ozone feedback, Geophysical Research Letters, 44, 465–474, DOI:10.1002/2016GL071011supplementary material

Paper highlighted in Eos: Including Ozone Complexities in Climate Change Projections, Eos, 98

2016

Chiodo, G., and L.M. Polvani (2016):Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback, Journal of Climate, DOI: 10.1175/JCLI-D-15-0721.1

Chiodo, G., Garcia-Herrera, R., Calvo, N., Vaquero, J.A. Añel, and K.Matthes (2016):The impact of a future solar minimum on climate change projections in the Northern Hemisphere, Environmental Research Letters, DOI: 10.1088/1748-9326/11/3/034015

2015

Misios, S., et al. (including G. Chiodo) (2015):Solar Signals in CMIP-5 Simulations: Effects of atmosphere-ocean coupling, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2695

Hood, L., et al. (including G. Chiodo) (2015):Solar Signals in CMIP-5Simulations:The ozone response, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2553

Mitchell, D., et al. (including G. Chiodo) (2015):Solar Signals in CMIP-5 Simulations, The Stratospheric Pathway, Quarterly Journal of the Royal Meteorological Society, DOI:10.1002/qj.2530

2014 and previous

Chiodo, G., Marsh, D.R., Garcia-Herrera, R., Calvo, N., and J.A. García (2014):On the detection of the solar signal in the tropical stratosphere, Atmospheric Chemistry and Physics., DOI:10.5194/acp-14-5251-2014, 2014

Chiodo G., N. Calvo, D.Marsh and R.Garcia-Herrera (2012):The 11 year solar cycle signal in transient simulations from the Whole Atmosphere Community Climate Model, Journal of Geophysical Research, DOI:10.1029/2011JD016393

Chiodo G., and L.Haimberger (2010): Interannual Changes in mass consistent energy budgets from ERA-Interim and satellite data, Journal of Geophysical Research, DOI:10.1029/2009JD012049