

Grado en Física (curso 2024-25)

	edades Físicas Materiales	Código	800550	Curso	4°	Sem.	1°
Módulo	Física Aplicada	Materia	Física de Materiales	Tipo	optativo)

	Total	Teóricos	Práct./Semin.	Lab.
Créditos ECTS:	6	3.75	2.25	
Horas presenciales	45	28	7	10

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

Profundizar en los aspectos más relevantes de las propiedades físicas de los materiales.

Breve descripción de contenidos

Propiedades eléctricas, ópticas, mecánicas y magnéticas de los materiales. Excitaciones elementales.

Conocimientos previos necesarios

Física del Estado Sólido

Profesor/a	Francisco D	omínguez- <i>F</i>	Adame Aco	osta	Dpto.	FM
coordinador/a	Despacho	02.123.0	e-mail	<u>a</u>	dame@f	is.ucm.es

Teoría/Prácticas/Seminarios - Detalle de horarios y profesorado								
Grupo	Aula	Día	Horario	Profesor	Fechas	hora s	T/P	Dpto.
A	5	X V	12:00-13:30 9:00-10:30	Francisco Domínguez-Adame Acosta	Todo el semestre	35	T/P	FM

l		Laboratorios - Detalle de horarios y profesorado						
	Grupo Lugar sesiones Profesor					Dpt o.		
	L1	Laboratorio	12, 19 y 26 de noviembre y 3 de diciembre de 15:00-17:00h	Rafael Fuster Rico	10	FM		

L2	Laboratorio	13, 20 y 27 de noviembre y 4 de diciembre de 12:00-14:00 h.	Rafael Fuster Rico	10	FM	
----	-------------	--	--------------------	----	----	--

	Tutorías						
Grupo	Profesor	horarios	e-mail	Lugar			
Α	Francisco Domínguez-Adame Acosta	M, J.:09:00-10:30 +3h por correo y CV	adame@fis.ucm.es	02.123.0			

Programa de la asignatura

- Bandas de energía y superficies de Fermi. Métodos de cálculo de estructuras de bandas.
 Determinación experimental de la estructura de bandas.
- Metales y aislantes. Fenómenos de conducción eléctrica y transiciones ópticas.
- Excitaciones elementales en sólidos: Fonones, plasmones, excitones.
- Magnetismo en sólidos: Orden magnético espontáneo. Magnones.
- Superconductividad.
- Defectos en materiales y su influencia en las propiedades físicas. Elasticidad.

Prácticas de Laboratorio: Estados Electrónicos en Cristales. Vibraciones de Red. Defectos en Materiales Magnéticos. Caracterización de un Semiconductor.

Bibliografía

- N. W. Ashcroft y N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
- H. Ibach y H. Lüth, Solid State Physics (Springer, 2009).
- J. Singleton, Band Theory and Electronic Properties of Solids (Oxford University Press, 2006).
- E. Kaxiras, Atomic and Electronic Structure of Solids (Cambridge University Press, 2007).
- R. J. D. Tilley, Defects in Solids (John Wiley & Sons, 2008).
- F. Domínguez-Adame, Física del Estado Sólido: Teoría y Métodos Numéricos (Paraninfo, 2001).

Recursos en internet

Metodología

Clases teóricas generales y ejemplos y ejercicios prácticos.

Evaluación						
Realización de exámenes Peso: 60%						
Se realizará un examen final que se calificará con nota de 0 a 10.						
Otras actividades de evaluación Peso: 40%						

Los alumnos deberán realizar 4 prácticas de laboratorio, que serán calificadas por el profesor encargado de las mismas. Se impartirán 10 horas de laboratorio, en horario de clase

Prácticas de Laboratorio:

- 1. Estados electrónicos en cristales
- 2. Vibraciones de la red
- 3. Defectos en materiales magnéticos
- 4. Plasmones

Además de las prácticas de laboratorio se propondrá una serie de actividades que serán evaluadas entre 1 y 10. Esta calificación se guardará hasta el examen final extraordinario de junio-julio.

Calificación final

Si E es la nota final del examen y A la nota final de otras actividades, la calificación final CF se obtendrá como CF = 0.4*A + 0.6*E. La calificación de la convocatoria extraordinaria se obtendrá con el mismo criterio.