Quantum Machine Learning

arXiv: 1801.00934 (2018) submitted to Phys.Rev. Lett.

Erik Torrontegui

IFF - CSIC

13/12/2018

Table of contents

Preliminar

The quantum neuron

Outlook

1+1+...+1=N parameters

2x2x...x2=2^N parameters

Preliminar

The quantum neuron

Outlook

Motivation

Amount

Complexity

Motivation

Machine Learning

Quantum Computing

$$|\Psi\rangle = \sum_{i=1}^{2^{N}} a_{i} |\phi_{i}\rangle \qquad \qquad |\Psi'\rangle = \hat{U} |\Psi\rangle$$

$$dim(\hat{U}) = (2^N \times 2^N)$$
enormous
parallelization
parallelization

Motivation

Quantum Machine Learning

$q(\mathbf{x}) \simeq h_{\theta}(\mathbf{x})$

Representation

Training set & Cost function

Minimizer

neural networks

Representation

 $\theta \equiv [\omega_{ij}, \omega'_{jk}]$

Training set & Cost function

Minimizer

Representation

Training set & Cost function

neural networks

Representation

neural networks $\theta \equiv [\omega_{ij}, \omega'_{jk}]$

Training set & Cost function

- Regression (y-continuous)

- Classification (y-discrete)

Minimizer

neural networks

Representation

$\theta \equiv [\omega_{ij}, \omega'_{jk}]$ Output Tayer Input layer Hidden layer

Training set & Cost function

- Classification (y-discrete) $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ $J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$ $h_{\theta} \equiv \text{hypothesis}$ **Minimizer** - Gradient Descent, - Krotov, $\frac{\delta J}{\delta \theta} = 0$ 1(0,...,6,) - Quasi-Newton methods, 07 07 10 15 14 14 12 11

Artificial Neural Networks

The perceptron

Artificial Neural Networks

The perceptron

Quantum

Quantum Neural Networks

Neuron activation corresponds to qubit excitation. The continuous output is the excitation probability

$$|0\rangle \to \sqrt{1 - f(input)} |0\rangle = \sqrt{\frac{1 - f(input)}{f(input)}} |0\rangle + e^{i\theta_{rand}} \sqrt{f(input)} |1\rangle \\ x_i = \sum_{j=1}^N \omega_{ij} \hat{\sigma}_j^z - \theta_i$$

$$H = H_0 + \sigma_{out}^z \sum_i w_i \sigma_i^z$$

Quantum

Quantum Neural Networks

Neuron activation corresponds to qubit excitation. The continuous output is the excitation probability

$$|0\rangle \to \sqrt{1 - f(input)} |0\rangle = \sqrt{\frac{1 - f(input)}{f(input)}} |0\rangle + e^{i\theta_{rand}} \sqrt{f(input)} |1\rangle \\ x_i = \sum_{j=1}^N \omega_{ij} \hat{\sigma}_j^z - \theta_i$$

Universality

$$H = H_0 + \sigma_{out}^z \sum_i w_i \sigma_i^z$$
$$\langle Q(\hat{\sigma}_{in,1}^z \dots \hat{\sigma}_{in,N}^z) \rangle = \sum_j 2\beta_j \langle f\left(\sum_k \omega_{jk} \hat{\sigma}_{in,k}^z - \theta_j\right) \rangle$$

 $t = 0 \Rightarrow |\Omega(0)| \gg |x_j|$ $t = t_f \Rightarrow |\Omega(t_f)| \ll |x_j|$

 $\begin{aligned} & \textbf{ADIABATIC EVOLUTION} \\ & \mu(t) = \hbar \bigg| \frac{\langle \phi_1(t) | \partial_t \phi_2(t) \rangle}{E_1(t) - E_2(t)} \bigg| \ll 1 \quad \forall t \end{aligned}$

FAst QUasi-ADiabatic (FAQUAD)

FAst QUasi-ADiabatic (FAQUAD)

training set

 $\{(X_i, Y_i)\}_{i=1}^S$

X_i	Y_i
$X_1 = 1$	$Y_1 = 1$ (prime = True)
$X_2=2$	$Y_2 = 1$ (prime = True)
$X_3 = 3$	$Y_3 = 1$ (prime = True)
$X_4 = 4$	$Y_4 = 0$ (prime = False)
	444

data representation

QNN action

$$\hat{U}_{j} = \exp\left[-i\hat{\sigma}_{N+j}^{y}\chi\left(\sum_{k< N+j}\omega_{j,k}\hat{\sigma}_{k}^{z} + \theta_{j}\right)\right]$$
$$\chi(x) = \arcsin[f(x)^{1/2}]$$
$$\hat{U}_{tot} = \prod_{j=1}^{M}\hat{U}_{j}$$

feed the QNN

$$\begin{split} |\Psi(X_i)\rangle &= |x_{i1}, x_{i2}, \dots, x_{iN}, 0_{N+1}, \dots, 0_{N+M}\rangle \\ \hat{U}_{tot} |\Psi(X_i)\rangle \\ p(X_i) &= \frac{1}{2} \left(\langle \Psi(X_i) | \hat{U}^{\dagger} \hat{\sigma}_{out}^z \hat{U} | \Psi(X_i) \rangle + 1 \right) \\ &\simeq Y_i = Q(X_i). \end{split}$$

define cost function

$$\mathcal{C}(\omega, \theta) = \frac{1}{S} \sum_{i=1}^{S} H(Y_i, p(X_i))$$
$$= \frac{1}{S} \sum_{i=1}^{S} [Y_i \log p(X_i) + (1 - Y_i) \log(1 - p(X_i))]$$

optimize the QNN

training the QNN =
$$\begin{cases} \frac{\delta C}{\delta \omega} = 0\\ \frac{\delta C}{\delta \theta} = 0 \end{cases}$$

make new predictions

 $X_{S+1} = 9 \rightarrow Y_{S+1} = 0$ (prime = False)

Preliminar

The quantum neuron

Outlook

Outlook & Applications

Multiqubit-gates & quantum sensors

$$\hat{W}_{mqb} = \exp[i\hat{Q}(\hat{\sigma}_1^z, \dots, \hat{\sigma}_{j-1}^z)\hat{\sigma}_j^y] \\
\simeq \prod_n \hat{U}_j(\sum_{k < j} \omega_{jk}^{(n)} \hat{\sigma}_k^z - \theta_j^{(n)}; f)$$

XOR for
$$M_1 < \sum_{i=1}^{N} s_i < M_2$$

Outlook & Applications

Experiment

Prof. C. Wunderlich U. Siegen

trapped ions setup

$$\hat{H}(t) = \sum_{i=1}^{N} \Omega(t)\hat{\sigma}_i^x + \sum_{j$$

Take home

The quantum perceptron is an universal approximator. It has at least the same approximation power as classical neural networks.

We provide a straightforward physical implementation using an Ising Hamiltonian: trapped ions, cold atoms, superconducting circuits, ...

The quantum perceptron constitutes the building block of new quantum technologies: multiqubit-gates, quantum sensing, ...

Take home

The quantum perceptron is an universal approximator. It has at least the same approximation power as classical neural networks.

We provide a straightforward physical implementation using an Ising Hamiltonian: trapped ions, cold atoms, superconducting circuits, ...

The quantum perceptron constitutes the building block of new quantum technologies: multiqubit-gates, quantum sensing, ...

Take home

The quantum perceptron is an universal approximator. It has at least the same approximation power as classical neural networks.

We provide a straightforward physical implementation using an Ising Hamiltonian: trapped ions, cold atoms, superconducting circuits, ...

The quantum perceptron constitutes the building block of new quantum technologies: multiqubit-gates, quantum sensing, ...

Welcome to QUINFOG

IFF CSIC

Activities Publications Members News Contact.

QUINFOG

Understanding Quantum Technologies

Our mission

To understand and develop new quantum technologies, transferming this knowledge to the sociality at large.

We do research on quantum technology projects, as well as consulting and training of groups and individuals.

We are a group of highly multivated scientists with a simple expertise in the study of quantum systems.

