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1 Risk Modeling Introduction

Credit risk is described as the risk of trading partners, named counterpar-
ties, not fulfilling their obligations on the due date or at any time thereafter
resulting into losses for investors [13].This situation can be generated by
many factors such as credits events (frauds, bankruptcy, etc.) or variations
of counterparty’s rating.

The principal objective of the credit risk management is to provide risk
models and evaluation tools in order not only to evaluate risk on finan-
cial products, but also to intend to control it. The main difficulty is the
complexity of the loss distribution. Credit losses are characterized by large
probabilities of small earnings, combined with a small chance of losing a big
percentage of the amount of the investments. As a result, the loss distribu-
tion is heavily asymmetric and functions related with risk measure are highly
non-linear.

A portfolio is defined as a collection of investments all owned by the
same individual or organization. These investments can include stocks (in-
vestments in individual businesses), bonds (investments in debt that are



designed to earn interest) and mutual funds (pools of money from many
investors that are invested by professionals or according to indices).

Our principal aim is to provide a method in order to evaluate and avoid
losses in the portfolio. We analyze the portfolio’s tendency depending on the
changes of the variables involved in the models such as risk or nominal. First
of all; we study the behaviour of the portfolio’s losses in the general case.
Afterwards, we modify each parameter separately in order to reach some
conclusions about each variable’s sensitivity. And finally, all parameters are
changed at the same time.

A glossary will be added to the end of the document in order to help the
reader to better understand the meaning of certain terms.

2 Collateralized Loan Obligation

Collateralized Loan Obligations (CLO)

CLO are security interests in pools of assets that usually comprise loan.
The objective, for financial institutions, is to buy securitization in order to
protect themselves from eventual defaults of counterparties included in the
CLO [12].

Investors support the credit risk of the collateral but in counterpart re-
ceive, until CLO maturity date, a periodic remuneration proportional to the
risk.

We present here the general structure of the portfolio to be optimized. In
fact, we consider a portfolio of portfolios, which are called inner portfolio.

Numerous tranches of securities are originated by CLO’s, offering in-
vestors multiple credit risk characteristics. Tranches are divided in categories
according to their degree of risk:

- Senior: Low credit risk. It is a security that only covers high loss events.
Consequently, the spread paid by investors is the lowest.

- Mezzanine: Medium credit risk. Intermediate loss events are covered.

- Junior: High credit risk. In this case the spread is the highest as the
security covers first losses. Usually, due to this high value, financial
institutions do not buy securitization on this tranche.

CLO’s structure example

We illustrate the CLO’s structure with this example, we consider a ma-
turity of one year and compound by 4 facilities:



Facility 1
250.000.000€

Facility 2
150.000.000€

Facility 3
500.000.000€

Facility 4
100.000.000€

We have a nominal amount of 1.000.000.000€

SENIOR {

MEZANINE

JUNIOR {

Figure 1: CLO’s example

N

4

SENIOR

370.000.000€

TRANCHE A

300.000.000£

TRANCHE B

300.000.000€

EQUITY
30.000.000€

Figure 2: CLO’s example
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4 Facilities

1.000.000.000€

_— INVESTORS' GROUP D
—_— INVESTORS' GROUP C
—_— INVESTORS’ GROUP B
— INVESTORS’ GROUP A

The monthly remuneration that that investors receive to cover each tran-

che is:

e Investors’ group A, they cover the equity

They receive 600 b.p.

—

1.800.000 €/month.

e Investors’ group B, they cover the Tranche B



They receive 50 b.p. — 1.500.000 €/month.

e Investors’ group C, they cover the Tranche C

They receive 20 b.p. — 600.000 €/month.

e Investors’ group D, they cover the Senior

They receive 5 b.p. — 185.000 €/month.

The amount paid to the investors is 4.085.000 €/month, in one year will be
49.020.000 €. In case of defaults, there are four different scenarios:

1. Loss < 3%. Only investors who are in group A will pay to financial
institution, they will pay the CLO’s loss:

GROUP A —  (CLO's loss).

2. 3% < Loss < 33%. Investors who are in group A will pay 3% of
CLO’s nominal and investors who are in group B will pay the rest
(30% of CLO's nominal) — [CLO's loss — (3% of CLO's nominal)]

GROUP A —  30.000.000€
GROUP B —  [CLO's loss — (30.000.000€)] .

3. 33% < Loss < 63%. Investors who are in group A will pay 3% of
CLO’s nominal, investors who are in group B will pay 30% of CLO’s
nominal and the rest will be paid by investors who are in group C

GROUP A —  30.000.000€
GROUP B —  300.000.000€
GROUP C —  [CLO's loss — (330.000.000€)] .

4. 63% < Loss. Investors who are in group A will pay 3% of CLO’s
nominal, investors who are in group B and group C will pay 30% of

CLO’s nominal and the rest will be paid by investors who are in group
D



GROUP A —  30.000.000€

GROUP B —  300.000.000€

GROUP C —  300.000.000€

GROUP C —  [CLO's loss — (630.000.000€)] .

3 Mathematical modeling

3.1 Historical background

There have been a long amount of studies about Collateral Loan Obligation
which have been developed through history. This is why there are various
mathematical background about this subject. Consequently, we have found
a lot of literature related with the algorithm that we use and briefly explain
below.

3.1.1 Structural Models

There are two principal types of models that try to describe default processes
in credit risk literature: structural and reduced form models.

Structural models make use of the information provided by the evolution
of the firm’s structural variables, such as default and firm value, to find out
the time of default. In this instance, it is an endogenous process. On the
other hand, reduced models define the time of default as the first jump of
an exogenously given jump process in which the parameters are given by
the market data. Consequently, reduced models rely on external parameters
while structural models are characterized, not only because of its internal
process, but also because of providing a relation between the credit quality
and the firm’s economic and financial conditions. Another difference between
the two approaches mentions the treatment of the recovery rate: in reduced
models the recovery is not determined by the value of the firm’s assets and
liabilities, but specified by exogenous factors. Moreover, structural models
have considered interest rates.

Merton’s Model [15], which can be defined as the beginning of the struc-
tural literature on credit risk, applies a theory developed by Black and Scholes
[6], to the modeling of a firm’s debt. In this method, the firm defaults if its
assets are below the debt at the time of maturity.

Merton characterized the firm’s capital structure by equity and a zero-
coupon bond with maturity 7" and value D, so the debt value will be just
the difference between the asset v and the equity value.



In a second approach, written by Black and Cox (1976) [5], defaults take
place as soon as the firm’s asset value is below a certain threshold. This pa-
per is considered the first of the First Passage Models (FPM). First Passage
Models describe the default as the first time the firm’s debt value falls below
a lower barrier and the firm is liquidated immediately after the event. When
the default event does not directly mean liquidation, but it is regarded as
the beginning of a process, the model is considered to be part of the Liqui-
dation Process Models (LPM). Finally, State Depend Models (SDM) assume
that some of the parameters are depend on the business cycle or the firm‘s
external rating.

Merton’s Model

As it was mentioned before, the capital structure was formed by equity
and a zero-coupon bond, also known as an accrual bond, which is a debt
security that does not pay interest, but is traded at a deep discount rendering
profit at maturity when the bond is redeemed for its full face value.

We define Vi as the firm’s value asset and D as zero coupon bond value.
Therefore, at time of maturity 7" only two options are available:

- Vr > D = The firm does not default and shareholders receive Vp — D.

- Vr < D = The firm default and bonholders take control of the firm.

Merton assumes the inexistence of transaction costs, bankruptcy costs,
taxes or problems with indivisibilities of assets. He takes the interests rates
as a constant r and assumes that the value of the firm is invariant under
changes in its capital structure.

The firm’s asset value follow a diffusion process:

dVy = rVidt + oy VidWy,

where oy is the relative asset volatility and W, is a Brownian motion [4].
The payoffs to equityholders are B = max{Vy — D, 0}, and to bond-
holders are z(T,T) = Vo — Er.
When we apply the Black-Scholes pricing formula, the value of equity at
time t (0<t<T)is:

E(Vyou, T —t) = eI [e"TDV,8(d)) — DP(dy)]

where ®(.) is the distribution function of a standard normal random variable
and d; and d, are given by:
(<5 + o} (T — 1)

O'VvT —t
6

dy =




dgzdl—O'V T —t.

Finally, the probability of default at time T is given by P [Vr < D] =
®(—dy), and the value of the debt at time t obviously is z(¢t,T) =V, — E,.
To apply Merton’s model we have to estimate:

- Vi: the firm’s asset value.
- oy: its volatility.
- z(t,T): the zero-coupon bond.

Apart from the restriction of the default time, Merton’s Model has a
number of other disadvantages. One of the problems refers to the capital
structure as it is much more complicated than a simple zero-coupon bond.
The rest of assumptions Merton adopts are also nonrealistic, such as the
inexistence of transaction or bankruptcy costs, taxes, invariant value of the
firm, etc. But the major handicap of the model is that Merton assumes a
constant and flat term of interest rate.

First Passage Models

First Passage Models were introduced by Black and Cox [5] extending
Merton’s model to the case when the firm may default at any time, not only
at the maturity date of the debt.

The firm’s asset value follow the same diffusion process that Merton’s
model dV; = rVidt + oy V;dW;, but Black and Cox considered a constant
default threshold K > 0, and the time of default 7 is given by:

T =1inf{s > t|V; < K}.

Therefore, while we are at time t > 0, default has not been triggered and
Vi > K.

If we use the reflection principle of the Brownian motion W, we can infer
the default probability from time ¢ to T":

Plr <T|r>t]=®(h) + exp{Q (r - i) In <K) i} D(ha),

2 Vta‘%

where




hgzhl—O'V T—t.

In order to solve the major criticism Merton’s model has received, FPM
introduce a default threshold so that the firm may default at any time, not
only at the maturity date of the debt. If we assume a constant threshold
K, the time of default is given by the first time before maturity that the
asset value is below the constant K. However, Black and Cox defined a time
dependent default threshold.

The default threshold can be understood in different ways. It can be
interpreted as a safety guarantee of the firm’s debt so bondholders take con-
trol of the company once its asset value reaches this level. In this case, the
default threshold would be exogenously established. But it can also be con-
sidered endogenously if the stockholders set the value in order to maximize
the equity. Another possibility is the negotiation between stockholders and
bondholders to determine the default threshold.

These kinds of models consider some extensions in order to introduce
more realism: strategic default, debt subordination, stochastic interest rates,
etc. but, on the other hand, they increment its analytical complexity.

It also has many drawbacks. The main one is the analytical complexity
that makes difficult to obtain closed form expressions for the value of the
firm’s equity and debt. Another drawback is the predictability of defaults,
because default does not come as a surprise, it makes it a predictable event

and it allows investors the perfect knowledge of the firm’s asset value and
default threshold.

Default Correlation

After the single firm case has been mentioned, we present structural mod-
els for default correlation between firms. There are several ways to introduce
default dependences correlating the firms’ asset processes. If the dependence
is described as the firm’s credit quality on common macroeconomic factors,
it is called cyclical default correlation. However, it does not account for
all the risk dependence between firms. To introduce default dependences
between firms in structural models we have to correlate the firms’ asset pro-
cesses. We suppose that we have ¢+ = 1,..., I different firms with asset value
processes given by

dViy = rVidt + oy Vi 1 dWi 4,

where Wi 4, ..., W, are correlated Brownian motions. Since this model imply
predictable defaults, we introduce correlated jumps components.



Giesecke and Goldberg [11] studied structural models for default correla-
tion and took into account credit risk contagion effects in what they termed
contagion default correlation where the default of one firm can cause the
default of linked firms. Therefore, they illustrate the relation between firms
in terms of, for example, financial or commercial characteristics so that the
firms’ default thresholds depend on each other.

Finally, we describe factor models which divide the firm’s asset values
in groups of common factors which introduce the default correlation in the
model and the firm’s particular factor.

3.1.2 Factor Models

A factor model relates the systematic or non-diversifiable components of the
economy that drive changes in the asset value. The most generic form of this
model responds to the formula

J
Vit = E W; i 54 + €y
=1

where V;; is the return value on asset ¢, w; ; is the change in return on asset ¢
per unit change in factor j, Z;, is the value of factor j and ¢;, is the portion
of the return on asset 4, not related to the factors. In the formula, Z;; and
€;,+ are unknown, while w; ; is a deterministic parameter.

As we have mentioned before, default correlation is used to measure the
default relationship between two firms, either positive or negative. If there
is no sign of such relationship, it means that the default are independent. In
this case, the default probability of both firms is the product of the individual
probabilities of default.

In literature, negative default of correlation has often not been considered
because of its lack of occurrence. Besides, we have considered the case in
which if two borrowers are correlated, it does not mean directly that the
probability of defaulting at the same time is higher. It is also possible that
the default of the firm can benefit other firms.

Thus, if we have to evaluate the degree of relationship between the vari-
ables of the factor models, that is, if we have to define the correlation, it
must be follow that:

- corr(€;,Z;)= 0 which means that the value of the factor j Z;, and the
portion of the return on asset ¢ F; not related with the factors are
independent.



- corr(€;,ej)= 0 due to the fact that the portions of the return on different
assets have no relation at all.

One example of a Factor Model is the KMV’s Model [16], is a method-
ology proposed by Kealhofer, McQuown and Vasicek. The KMV’s principle
refers to the correlations of default between clients that are presented using
a type of structural default processes called factor models.

KMV’s Model

The determination of default correlation has been one of the major prob-
lems in portfolio management of default risk. Although it exists a lot of
historical information about the relationship between firms, and it is pos-
sible to estimate an average default correlation, the estimates obtained are
highly inaccurate.

The derivatives approach enables us to determinate the default correla-
tion between two firms knowing their asset correlation and their individual
asset probabilities. Extending this model to estimate the value correlation
between each pair of firms in the portfolio, and obtain the correlation ma-
trix 2 we require KMV’s Model. Extending this model to estimate the value
correlation between each pair of firms in the portfolio, and not only the corre-
lation between two variables, we require the correlation matrix. This matrix
represents the estimations of the relationships among all the clients in the
portfolio, i.e. between all possible pairs of variables. In this instance, we will
obtain the correlation matrix > from KMV’s Portfolio Manager.

The KMV model proposes using a factor model, but instead of having
unknown factors, they are taken as observed. KMV’s model assumes that the
firm’s return volatility can be explained by two effects: a systematic effect,
defined by the composite factor and particular effects, characterized by the
firm.

. Composite Firm
Firm .
[ Return } = | Factor + | Specific
Return Effects
We can decompose the composite factor return as:
Composite Country Industry
Factor = | Factor + | Factor
Return Returns Returns

In order to identify the firm’s return assets sensibility of the global, re-
gional and sectorial systematic movements, the industry and country rates
are discomposed in global, regional and sectorial factors.

10



Each client is identified by 14 random variables ((G¥)1<x<14) : 2 global
rates, 5 regionals and 7 sectorials, by their activity sectors (61 sectors) and
their geographical areas (45 areas) using random variables C; and I; respec-
tively. Those factors G¥, C; and I; are supposed to be independent and
normally distributed.

Finally, the correlation between clients in this method is given by:

+/1-R2\[1- R,

where (53 = 1if i = j, 0 otherwise. at, 3% and 3% are real coefficients that
represent the dependence of each firm to the factors G*, C; and I, respectively
and such that 3712 (ai)? + (8%)2 4 (B%)? = 1.

14
corr(i,j) = RiR; Z ajod + 9% + gl
k=1

3.1.3 Parameters Estimation

There are several ways of calibrating V; and oy

- Making use of Itd’s Lemma to obtain a system of two equations in
which we only need to know the variables V; and oy [7]. Assume that
the firm’s equity value follows a geometric Brownian motion under P,
with volatility og

oy = EVEO'E(I)(d})
Et(‘/b UVaT - t) = Et7

where E, is the observed market price.

- Duan [2] proposes another method based on maximum likelihood es-
timation using equity prices and the one-to-one relationship between
equity and asset levels given by:

Et(‘/h ov, T— t) = G*T(T*t) [eT(Tit)‘/t(I)(dl) - Dq)<d2):| :

- Jones [14] propose a different way of estimating V; and oy that consists
on estimating the asset value as the sum o the equity market value, the
market value of traded debt and the estimated value of non-traded
debt. Making a time series for V; we can estimate its volatility oy .

11



3.2 Considered Model

In this section, we present the basis of the model used to evaluate CLO’s
Loss density function. The main idea is to obtain a set of possible scenarios
(Monte Carlo algorithm). Therefore, we use a default time model to simulate
those times for all the firms in our portfolio (Copula function) and taking
into account possible correlations between each pair of firms (KMV’s Model).

3.2.1 Copula functions

We have used the probabilistic concept of copula in order to obtain the firm’s
default time. The main idea is to define the marginal distribution of survival
time for each credit risk. In order to determine the joint distribution of
survival times with given marginal distributions and a correlation structure,
we used the Copula function as a simple and convenient approach.

A copula function links univariate marginals with their multivariate dis-
tribution. For m random variables, wuq, us, ..., u,, the default correlation pa-
rameter p, the joint distribution function C' , also called Copula function,
will be define as

C(ur, gy ooy tn, p) = PlUy < up,Us < ug, ..., Up <y

If we apply it to link marginal distributions with a joint distribution, for
a given univariate marginal distribution functions Fj(x1), Fo(xs), ..., Fn(zy),
the function

C(Fi(z1), Fo(x2), ..., Fu(xy)) = F(x1, 22, ..., Ty)

results in a multivariate distribution function with univariate marginal dis-
tributions:

Uy < Fi(x1),Us < Fy(x2), ..., U, < F(x,)]
s ETHU,) < )

n

Xl S x 7"'aXn S xn]

C(Fi(x1), ..., Fu(zn),p) =

|
3T
o
5
A
=

Thus, the marginal distribution of X; is

C(Fi(+00), ..., F(+0), p) = P[X; <+00,..., X, < 4]
= PIX; < ()]

12



Suppose a portfolio with n clients. Let us assume that for each client i we
have constructed the distribution function Fj(¢) of survival time 7;. Using a
copula function C' we also obtain the joint distribution of the survival times
as follows:

F(t1>t27 -'-atn) - (O(Fl(t1)>F2<t2)a ...,Fn(tn),p).

But using normal copula function, we have

Flt1,ta, o tn) = Op (@ H(FL (1)), D Fo(ta)), ooy @ (Fu(tn)),

where ®,, is the n dimensional normal cumulative distribution function with
correlation matrix ¥. Finally, introducing another series of random variables
Y1, Y,, ..., Y, we will obtain the correlated survival times:

Vi =0 Y (Fi(Th)), Y, = @ (F(Ty)), ... Y = @71 (FW(Th))-

With each simulation we create the survival times for all the credits in
the portfolio. Consequently, we are able to value any credit derivative struc-
ture. Our algorithm is based on the Monte Carlo simulation approach and
the normal copula function to define the survival time distribution. For each
simulation we create a possible scenario of default times tq,1ts,...,%,, from
which we have the first-to-default time as the minimum of the default times.

Example of a Copula model

We introduce an example of the model explained above in which we are
able to determine the joint distribution of survival times. First of all, we
simulate a correlation structure with the Sigma-Matrix: Y = ='Z, where
> represent the correlation between each client in the considered portfolio
and = its Cholesky’s decomposition. Afterwards, we create the marginal
distributions V' = ZG = (vy,...,v,) to obtain the joint distribution of the
survival times F(tq,to, ..., t,) = C(Fi(t1), Fa(ta), ..., Fi(tn)), as follows: 7, =
F1(O(v;)) thus Fy(t) = P(r; < t).

(2

3.2.2 Measures of Risk

As we have defined before, the risk is the chance that an investment’s actual
return will be different than expected. This includes the possibility of losing
some or all of the original investment. Measures of risk have a significant
role in optimization under uncertainty, especially in coping with the losses
that might be incurred in finance or the insurance industry.

13



We can predict loss as a function z = f(z,y), where z € X C R" is a
decision vector that represents the portfolio, and y € Y C R™ is a random
vector that represents future values of a number of variables like interest
rates or weather data. The vector y is governed by a Borel measure P on Y
and is independent of x.

Two of the main popular measures of risk are the value at risk, VaR,,
and the conditional value at risk, CVaR,. Considering a given confidence
level , we can define VaR,, as the smallest loss of the worst o % of losses
and CVaR,, is the average of the worst a % of losses.

More precisely, for each z we define by ¥(z,-) on R the resulting dis-
tribution function for the loss z = f(z,y), i.e., V(z,() = P{y|f(z,y) < (}.
The VaR, of the loss associated with a decision z is the value (,(x) =
min {¢|¥(z, () > a} where the minimum is attained because ¥(zx, () is non-
decreasing and right-continuous in (. The CVaR,, of the loss associated with
a decision z is the value ¢, (r) = mean of the a-tail distribution of z = f(x,y)

defined by:

B 0 for ¢ < (o),
Vo(z, () = { (U(x,¢) —a)/(1 —a) for ¢ < (. ().

In our case, we are going to calculate VaR, and CVaR, from the loss
distribution G:

e The o-Value at Risk:

L/

VaR,(6r) = inf[L| ) Br(x)dz > (1 — o).

e The a-Conditional Value at Risk:

L/

CVaRa(fr) = — /O "L [ bulwyde > (1= plap

CVaR has fundamental properties as a measure of risk with significant
advantages over VaR. CVaR is able to quantify dangers beyond VaR and,
moreover, it is more mathematically coherent [19].

4 Portfolio Structure and Development
We apply a Default time model [17] derived from the KMV’s model.

This is the general structure of the portfolio’s analysis:

14



e Input.
e Evaluate the loss density function of the associated portfolio.

e Compute the desired portfolio performance indicators.

Step 1. Collect facilities’ data:

The portfolio is formed by n firms. The bank during the portfolio’s con-

stitution set these data for each i =1,---,n:
N; Nominal

T, Maturity date

Sp; Spread

Risk; Risk.

For each client associated to facility ¢ private institutions can give us these
informations:

C; Country of business

I; Industry sector

Rat; Rating

GRR;  The global recovery rate, which is the recoverable amount in case of
default (GRR; =1 — LGD;)

R; R-square, represents the degree of correlation between the value of
a client’s asset and the behavior of the global economy.

In our case:

- We build each N; randomly in [0, 107]

- The risk is a random integer number between 1 and 10, where 10 will
be the highest probability of default

- The maturity 7; time will be one year

- We use the tangent hyperbolic function in order to calculate F'~!
- For each LG D; we set the value 0.6

- We use an alpha value of a = 0.01

- Finally, we obtain the correlation matrix ¥ calculating a matrix of
correlation coefficients for the matrix X, which is a 2nxn matrix being
n the number of clients. Each column represents each client for 1,....n
and each row is an observation from the differents values of the firm.

15



Step 2. Evaluate the loss density function:

We develop this program with MATLAB, and its structure is:

For j going from 1 to M. Monte-Carlo scheme where M correspond
the number of iterations

— Generate a Gaussian vector V: V = ZG = (v1,...,0,),
where = is the Cholesky’s decomposition of the correlation matriz
Y = Z'Z and G is a defined standard gaussian vector

— Generate a default time vector T: We compute it from 1; =
F71(O(v;)) where F~1 is the marginal default probability function

of T defined by Fi(t) = P(r; < t) and (©(v;)) is the standard
normal gaussian density function

— Compute the loss amount: In each scenario j we calculate the
loss from L(j) = L(j) + LGD(i) * Nom(i) that is by taking the
sum of previous losses and product of the current lost given default
and the facility nominal

EndFor

Step 3. Compute the desired portfolio performance indicators:

Using data stocked in the loss’ vector we can compute some indicators:

1. The discrete loss density function (37,: We discretize the possible losses’
vector as disL = min(L) : (max(L) — min(L))/(nbuck — 1) : max(L)
where nbuck is defined depending on the stepsize, after that we ob-
tain the histograph as v = hist(L, disL) to compute the loss density
function.

2. The Value at Risk (VaR): we accumulate the probability as we move
along a discretized range until we reach o and obtain the corresponding
loss value:

L/

VaR,(Br) = inf[L/| i Br(x)dz > (1 — a)]

3. The Conditional-VaR (CVaR): We have calculated CVaR using two

different methods obtaining similar results:

- We find the average between the amounts of losses that are still
over VaR

16



- We calculate the area of the rectangle corresponding to the func-
tion of each loss that is still over a and we divide the sum of all

by a: CVaR,(61) = £ [“if[L| [ Br(x)de > (1 - p)ldp.

5 Results obtained

Our main objective is to analyze the portfolio’s tendency depending on the
changes of the variables. First of all, we have studied the behavior of the
portfolio’s losses in the general case. Afterwards, we have modified each
parameter separately coming to some interesting conclusions. Finally, all
parameters have been changed at the same time.

5.1 Disturbing Client and the model iteration number

We launch the program for different client’s numbers and Montecarlo’s iter-
ations. For each combination we launch the program ten times and we make
its mean. Thus, we obtained these results:

Number of Clients

100 250 500 1000
Total Nominal 5,248E+08 1,222E+09 2,471E+09 4,813E+09
VaR 6,825E+07 1,386E+08 2,385E+08 4,411E+08
1000 % vs Total Nominal 13,01% 11,34% 9,65% 9,16%
Iterations CvaR 7,173E+07 1,438E+08 2,455E+08 4,479E+08
% vs Total Nominal 13,67% 11,76% 9,93% 9,31%
VaR 6,931E+07 1,404E+08 2,381E+08 4,309E+08
5000  |% vs Total Nominal 13,21% 11,49% 9,64% 9,14%
Iterations CvaR 7,325E+07 1,460E+08 2,460E+08 4,510E+08
% ws Total Nominal 13,96% 11,95% 9,95% 9,37%
VaR 6,968E+07 1,403E+08 2,387E+08 4,405E+08
10000 % vs Total Nominal 13,28% 11,48% 9,66% 9,15%
Iterations CVaR 7,377E+07 1,460E+08 2,459E+08 4, 508E+08
% vs Total Nominal 14,06% 11,95% 9,95% 9,37%
VaR 6,955E+07 1,402E+08 2,388BE+08 4,417E+08
100000 % vs Total Nominal 13,25% 11,47% 9,66% 9,18%
Iterations CVaR 7,376E+07 1,462E+08 2,467E+08 4,528E+08
% vs Total Nominal 14,06% 11,96% 9,98% 9,41%

Table 1: Disturbing clients and Montecarlo’s iterations.
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If we consider enough Montecarlo’s iteration, which means a large number
of possible scenarios, we can observe that the balanced sum of the amount of
losses approximately distributes as a normal variable. In probability theory,
the central limit theorem, developed by Aleksandr Lyapunov (1901) [8], states
conditions under which the mean of a sufficiently large number of independent
random variables, each with finite mean and variance, will be approximately
normally distributed.
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The graph of the associated probability density function is bell-shaped,
with a peak at the mean, and is known as the Gaussian function or bell
curve. Obviously, as the number of iterations increases, the obtained results
will be more accurated, as we can observe in the graphics.

Generally, we have noticed that there exists an inversely proportional
relationship between the percentage of losses and the number of MonteCarlo’s
iterations. As more scenarios are considered, the risk measures VaR and
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CVaR decreases. This is due to the fact that, as it has been said before, the
amount of losses distributes as a normal variable so the values tend to cluster
around the mean. Consequently, following the definition of VaR and CVaR,
both measures will take a lower value. We can see in the figure 7 a graphic

showing how the VaR and CVaR change as the Montecarlo’s iteration are
risen.
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= e
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w
]
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4,30E+08
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Montecarlo's iteration

Figure 7: VaR vs CVaR. Make for 1000 clients.

It also has to be mentioned the comparative between CVaR and the
nominal. Usually, the percentage of losses takes values between 15% and 9%.
As more clients are considered, this percentage decreases and it approaches
to the 9%. It is worth noting that diversifier the portfolio is, better results
are obtained because of risk decrease.
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Figure 8: Var vs Total Nominal. Make for 100000 Montecarlo’s iteration.

Only positive correlation

Finally, as we have mentioned before, in some literature only positive
correlation is considered because its likelihood to reality. Besides we will
work with both positive and negative values, we have launched the program
with just positive correlation to analyze it briefly. We can appreciate that
VaR and CVaR decrease, which means that the final amount of losses will
be a lower value. In fact, both risk measures are between a 50% and 60%
lower in positives correlations than in positives and negatives correlations.
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Number of Clients

100 250 500 1000
Total Nominal 4,898E+08 1,264E+09 2,557E+09 5,004E+09
VaR 3,127E+07 6,585E+07 1,065E+08 1,767E+08
1000 % vs Total Nominal 6,38% 5,21% 4,17% 3,53%
Iterations CVaR 3,329E+07 6,830E+07 1,102E+08 1,828E+08
% vs Total Nominal 6,80% 5,40% 4,31% 3,65%
VaR 3,153E+07 6,619E+07 1,083E+08 1,767E+08
5000 % vs Total Nominal 6,44% 5,24% 4,24% 3,53%
Iterations CVaR 3,436E+07 7,040E+07 1,133E+08 1,831E+08
% vs Total Nominal 7,02% 5,57% 4,43% 3,66%
VaR 3,148E+07 6,636E+07 1,078E+08 1,769E+08
10000 % vs Total Nominal 6,43% 5,25% 4,22% 3,53%
lterations CvVaR 3,415E+07 7,071E+07 1,134E408 1,836E+08
% vs Total Nominal 6,97% 5,59% 4,43% 3,67%
VaR 3,155E+07 6,610E+07 1,077E+08 1,766E+08
100000 % vs Total Nominal 6,44% 5,23% 4.21% 3,53%
Iterations CVaR 3.442E+07 7,039E+07 1,132E+08 1,839E+08
% vs Total Nominal 7,03% 5,57% 4,43% 3,68%

Table 2: Results only for positive correlation.

5.2 Disturbances in the program

Before starting to analyze the results obtained, we would like to mention
that despite taking the disturbances as independent, all the parameters in
our algorithm are connected. So, besides having studied them separately, the
results will be affected by the rest of variables. However, we have tried to
fix the rest of the components as much as we could so the conclusions would

not be that affected.

21




EXAMPLE 1 EXAMPLE 2
Total Nominal| 2,51E+09 Total Nominal 2,45E+09
VaR| 2,44E+08 VaR 2,47E+08
% vs Total Nominal 9,70% % vs Total Nominal 10,07%
CVaR| 2,50E+08 CVaR 2,54E+08
% vs Total Nominal 9,95% % vs Total Nominal 10,37%
Norm 1,6946 Norm 1,6899
10[ 33,10% 10 33,10%
g 24,90% 9 24,90%
8 19,95% ] 19,95%
7| 16,64% 7 16,64%
Slops's 6 14,27% Hope's 6 14,27%
funcHion, 5| 12,49y |function 5| 12,49%
of sk a 11,10% orbele a 11,10%
3 9,99% 3 9,99%
2 9,09% 2 9,09%
1 8,33% 1 8,33%
10 51 10 54
9 49 9 a5
8 58 8 50
Client's 7 52| | client's 7 65
with 6 47| |~ with 6 a1
default 5 55] | default 5 45
risk a 20| | risk 4 57
3 43 3 47
2 59 2 48
1 46 1 48

Table 3: Original data from each example.

We have considered 500 clients and 5000 Montecarlo’s iterations in every
disturbance. The Table 3 correspond with the original data that we have
later worked with. Consequently, two examples have been made in order to
obtain two different results.
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Figure 11: Each function in the image represents a different risk level, with the
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function corresponding to risk level 1, the lowest.

5.2.1 Nominal

First of all, we have modified the amount of money which the portfolio is
made up of. Obviously, it exists a basic relationship between the nominal
invested and the final amount of losses. But as we are working with percent-
ages, we will study if the VaR and CVaR vary when modifying the nominal.

The principal problem when talking about nominal is that it really de-
pends on the associated risk. In each simulation, the results are influenced
by the risk related to the firm which nominal is been disturbed. Higher risk
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represents large amount of losses, besides lower risks means less probability
of default. Therefore, if we reduced the amount of money related to firms
with high probability of default or increase the one associated with low risk,
then VaR and CVaR values will fall. On the other hand, VaR and CVaR will
take higher values if either the nominal associated with a low risk decreases
or if we invest more money in a firm with a high percentage of default.

The table 4 is the result of disturbing randomly a +10 percentage of each
client nominal.

Case number

Standard
% vs 1 2 3 4 5 6 J 8 9 10|Average| deviation

Total Nom| Original|-0,04% 0,23% 0,00% -0,08% 0,76% 0,42% 0,02% 0,29% 0,09% 0,01%| 0,20%| 0,24%

VaR Original| 0,24% 0,27%;-0,42%-0,05% 0,84% 0,60% 0,34% -0,40% -0,31% -0,55%| 0,40%| 0,22%
a

Total Nom| 9,73%| 9,73% 9,66% 9,70% 9,79% 9,76% 9,74%| 9,67% 9,67% 9,65%| 9,71%| 0,05%
a Original| 0,47% 0,44% -0,30%| 0,02% 0,68% 0,50% 0,44% -0,33% 0,12% -0,42%| 0,37%| 0,19%
var

Total Nom| 9,99% 9,99% 9,92% 9,95% 10,01% 10,00% 9,99% 9,91% 9,96% 9,90%| 9,96%| 0,04%

Table 4: Nominal’s disturbances for Example 1.

The fact that the nominal can increase or decrease vs the original amount
does not mean that both risk measures have to do it at the same time. If
we consider the results obtained in the case number 1, the nominal is 0, 04%
lower than the beginning while VaR and CVaR increase 0,24% and 0,47%
respectively. On the other hand in the fourth column, VaR decreases a 0, 05%
while the nominal is —0,08% vs Original. The case in which the nominal is
increase can be described with analogy. Moreover, the third case shows no
final change in the nominal while VaR and CVaR decrease significantly.

The figure 12 has been inserted as another way to show that same per-
centage of disturbed nominal can give different results in VaR.
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Figure 12: Nominal vs VaR.

However, if we modified the nominal significantly we will obtain the ob-
vious results: lower nominal means less amount of losses and vice versa.
The table 5 represents the percentage of VaR and CVaR vs the original one
modifying the nominal as much as the first row mentions to the 10% of the
firms.

Nomina's disturbance
-80% -60% -40% -20% -10% 10% 20% 40% 60% 80%
VAR | 7,05E+07| 6,83E+07| 6,07E+07| 6,59E+07| 6,56E+07| 6,51E+07| 6,40E+07| 6,35E+07| 6,29E+07| 6,14E+07
% 7,91% 4,55% 2,51% 0,84% 0,42%| -0,42%| -2,06%| -2,89%| -3,81%| -6,01%
CVAR| 7,49E+07| 7,27E+07| 7,12E+07| 6,97E+07| 6,92E+07| 6,85E+07| 6,72E+07| 6,66E+07| 6,58E+07 | 6,48E+07
% 8,76% 5,60% 3,36% 1,26% 0,52%| -0,55%| -2,35%| -3,27%| -4,36%| -5,88%

Table 5: Nominal’s disturbances.

5.2.2 Risk

As we were developing the algorithm and analyzing the results obtained with
the disturbances in the portfolio, we have come to the conclusion that the
risk is the most sensitive parameter in the portfolio. Evidently, the losses
increase as the risk takes higher values. But also, VaR and CVaR change
significantly their percentage depending on which risks are altered.

We have modified 41 the risk value of the 10 percent of the total clients:
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Case number

Standard
1 2 3 4 5 6 7 8 9 10| Average|deviation
10 -1 +3 -1 +0 -8 -2 -10 -3 -3 -4 -3 2,8
9 +1 -5 +0 +3 +9 +2 +9 +3 +5 +6 +3 35
8 +1 +3 +2 -3 -3 +7 +0 +4 -3 -2 -0 30
Client's Z +2 +1 +1 -4 -1 =12 +2 -3 +0 +3 -1 33
with 6 -1 -7 +2 +4 +1 +3 +2 -2 +3 -1 +1 25
default 5 -4 +0 -6 -4 +2 +0 -6 +0 +0 -2 -1 25
risk 4 +0 +7 +0 +4 +1 +0 +6 +0 <3 +0 +1 2,8
3 +2 +0 +4 -1 +0 +3 -1 +0 +1 +1 +1 22
2 +3 +2 +2 +4 +0 +3 -1 +8 +0 & +2 4,6
a1 -3 -4 -4 -3 -1 -4 -1 -7 +0 +1 -3 33
e | s e
- Original| 0,11% 0,27%-0,24% 0,09% -1,36% -0,51% -1,65% -0,30%:-0,98% -1,25%| 0,68%| 058%
a Total Nom| 9,72% 9,73% 9,68% 9,71% 9,57% 9,65% 9,54% 9,68%: 9,61% 9,58%| 9,64%| 0,05%

% Vs
— Original| 0,17% 0,219%]-0,12% 0,33% -1,15% -0,66% -1,11%-0,14% -1,00% -1,28%| 0,62%| 048%
. Total Nom| 9,96% 9,97% 9,93% 9,98% 9,83% 9,88% 9,84% 9,93% 9,84% 9,82%| 9,89%| 0,05%

Table 6: Risk’s disturbances for Example 1.

Each number that appears in the row client’s with default risk and column
case number matches with the counter that varies depending on the arrival
or departure of clients to the risk. For example, in the first column, if we take
a look to the firms with risk 5, we will assume that 4 clients have a lower risk
than before the disturbance. Risks 10 and 1 will only be able to decrease and
increase respectively because of the non existence of risks 11 and 0. We have
created these counters as a consequence of the importance of which risks and
how they are modified. However, a counter considering all the disturbances
at the same time might not be useful. Total risk counters are equal in the
cases 2 and 6 while their percentages of losses vs. the original are not even
the same sign. This is because the influence of the high risk on the amount
of losses is much more significant than the lower ones. For example, at case
7, clients with default risk 6, 7, 8 and 9 are increased, but VaR and CVaR
have the strongest decrease. This is due to the fact that clients with the
highest risk are decreased in 10 firms. We also have to consider the relation
between nominal and risk, as there exists an important dependence. In the
cases 1 and 3, the disturbance in the risk is similar, but VaR and CVaR are
completely differents. This is due either to high or low nominal associated
with risk 10 and risks 9 and 8 respectively.

According to the table 6, we can observe that despite of the fact that two
scenarios have the same modification (talking about numbers) in the risk,
VaR or CVaR are not equal. The amount of losses is much more influenced
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by higher values than by lower risks, which in our opinion seems reasonable
if we take a look to the figure 13 of the survival function.
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Figure 13: Survival functions for each disturbance.

The main explanation is that differences in the probability of default of
the firms with distinct risks are localized in the ones with a high percentage
of arriving to the default time before the maturity time. In addition, as we
have showed in the table above, VaR and CVaR are always positive. This fact
is also caused by the increase in the amount of losses of the firms with high
risks, whose sum is much higher than the amount of money not defaulting
obtained by the decrease of the risk value.

Case number

%vs |Risk1 Risk 2 Risk 3 Risk 4 Risk 5 Risk 6 Risk 7 Risk 8 Risk 9 Risk 10
VaR| 1,26E+08| 1,36E+08| 1,50E+08| 1,68E+08| 1,85E+08| 2,12E+08| 2,47E+08| 2,97E+08| 3,73E+08 5,01E+08
First 0,00% 7,41% 18,96% 32,89% 46,28% 67,77% 95,24% 135,01% 195,19% 296,21%

eh Previous 0,00% 7,41% 10,76% 11,71% 10,08% 14,69% 16,37% 20,37% 25,61% 34,22%
CVaR| 1,32E+08| 1,42E+08 1,56E+08 1,73E+08  1,92E+08| 2,19E+08 2,53E+08  3,04E+08 3,82E+08 5,09E+08
CVa First 0,00%  7,38% 18,32% 31,11% 45,10% 65,58% 91,77% 130,47% 189,42% 285,36%

Previous| 0,00% 7,38% 10,19% 10,81% 10,67% 14,11% 15,81% 20,18% 25,58% 33,15%

Table 7: Risk’s disturbances for Example 1.
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We confirm this conclusion in the table 7 which has been the result of
setting the nominal and making the risk being the same for all firms each
time. From this table, we have created the figure 14, that illustrates the
increase of VaR vs Risk value.

Finally, the table 8 shows the behavior of VaR and CVaR depending of the
risk. We have modified each client’s risk from +5 to -5, and we can observe
that the absolute value of the percentage of VaR is higher when decreasing
the risk value.

Risk's disturbance
5 4 3 2 1 -1 -2 -3 - -5
VAR | 6,31E+07| 6,33E+07| 6,40E+07| 6,41E+07| 6,46E+07| 6,62E+07 | 6,63E+07| 6,71E+07| 6,76E+07| 6,82E+07
%| -3,52%| -3,21%| -2,14%| -1,09%| -1,22%| 1,22%| 1,38%| 2,60%| 3,36%| 4,28%
CVAR| 6,61E+07| 6,64E+07| 6,70E+07| 6,73E+07| 6,76E+07| 6,98E+07| 7,00E+07| 7,08E+07| 7,14E+07| 7,20E+07
%| -3,09%| -3,56%| -2,69%| -2,25%| -1,82%| 1,38%| 1,67%| 2,83%| 3,70%| 4,58%

Table 8: Risk’s disturbances.

5.2.3 Correlation Matrix

The correlation with clients will be modified from —10% to 10% of the previ-
ous correlation. The disturbance in the firm’s correlation does not give any
significant information. The decrease or increase in VaR and CVaR are not
due to the disturbance in the matrix. While the norms of the X matrix case
2 and 3 in the table 9 are 0.02% and —0.01%; VaR values are practically
equal. Moreover the values of the percentages of the measures of Var vs the
original ones are not as high as usual. We might think that in case 8 that
the difference in the actual VaR and the original is really big, but we have
to take into account the range of values. In fact it is just a —0.52%.
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Case number

Standard
% vs 1 2 3 4 5 6 7 8 9 10|Average|deviation

Norm of
the X
Matrix | Original| 0,00%! 0,02%-0,01% 0,01%-0,01% -0,02% 0,04% 0,04% 0,01%0,01%| 0,01% 0,01%

Original| -0,01%|-0,14% -0,15%  -0,09%|-0,22% 0,22% 0,13% -0,52%| 0,04% 0,35%| 0,19%| 0,15%

Total Nom| 9,70% 9,69% 9,69% 9,70% 9,68% 9,73% 9,72% 9,65% 9,71% 9,74%| 9,70%| 002%

Original| -0,18% -0,13%-0,06% -0,22%, 0,12%|-0,10% 0,02% -0,78%-0,13% 0,00%| 017%| 022%

Total Nom| 9,93% 9,93% 9,94% 9,92% 9,96% 9,94% 9,95% 9,87% 9,93% 9,95%| 9.93%| 002%

Table 9: Matrix’s disturbances for Example 1.
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Figure 15: Norm vs VaR.

As it is explained above, in order to obtain the times of default, we applied
the Cholesky triangle that consists in the decomposition of a symmetric and
positive-definite matrix into the product of a lower triangular matrix and
its conjugate transpose. However, in our algorithm we calculate the default
correlation matrix by creating a a matrix composed with by scalar values
drawn from a normal distribution with mean 0 and standard deviation 1.
This means that the matrix might not been positive-definite in every case
and consequently the Cholesky decomposition will not be done.

5.2.4 Survival function

In order to modify the time values obtained with the survival function, we
had to be specially careful keeping each risk with a suitable range of values.
We have modified each survival function’s slope in a £10 percent in each
case and we obtained these results:
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Case number

Standard
1 2 3 4 5 6 7 8 9 10| Average| deviation
10| -0,65% 2,16% 293% 1,15% -2,16% -0,08% 1,50% 178% 2,71% -3,03%| 1,82%|  0,98%
o 231% 218% 1,96% 0,25% 0,28% -2,35% 0,28% 1,90% -2,38% -0,05%| 1,39%|  1,03%
8| 1.74% 037% -1,99% -0,31% -1,92% -0,59% -0,51% 1,60% -0,61% -0,26%| 0,99%|  0,72%
7| 059% 0,12% -1,22% 1,41% -0,26% -0,38% -0,12% -1,30%, 0,13% -1,65%| 0,72% 0,61%
ff—:ﬁ 6| 1,14% 085% -033% 1,26% 0,76% 0,08% 0,32% 133% -1,04% -0,78%| 0,79%|  0,43%
* ik | 5| 0,82% -093% 1,18% 0,49% -0,78% -0,20% -0,94% -085% 0,59% 0,46%| 0,72%  0,29%
a| 0,29% -022%| 040%| -0,05% 0,11%-091% 045% -001% -0,72% 0,98%| 041%  0,35%
3| 092% 096% 008% -0,12% 050% 0,25% 0,20% 078% 0,35% 091%| 051%  0,35%
2| -038% -0,73% 072% 047% -083% 0,49% -0,04% 001% -0,81% -057%| 051%  0,29%
1| -0,24% 0,08% -0,12% -0,69% 0,59% 0,13% 0,73% -0,17% 0,43% 0,15%| 033%|  0,25%
Average| 0,65% 0,48% 0,36% 0,39% -0,37% -0,36% 0,19% 051% -0,14% -0,38%| 0,38% 0,15%
% vs
ver | Originall 479% 327% 291% 3,00% -2,66% -2,28% 0,86% 346% -1,34% -399%| 2,86%| 1,17%

Total Nom| 10,17%| 10,02% 9,99% 9,99% 9,45% 9,48% 9,79% 1004% 9,57% 9,32%| 9,78%|  0,30%

% vs
Original| 4,85% 3,57%§ 291% 3,08% -2,89% -2,23% 1,25% 3,73% -0,62%-4,20%| 2,93% 1,29%
Total Nom| 10,43% 10,30% 10,24% 10,25% 9,66% 9,72% 10,07% 10,32% 9,89%; 9,53%| 10,04% 0,32%

Table 10: Survival’s function’s disturbances of the Example 1.

It could be observed, in the table 10, that in this disturbance a negative
average in the sum of all slope’s functions of risk defines a decrease in the risk
measures. We really can appreciate it observing the figure 16. In this case,
if we decrease the survival probability function, there then a large number
of firms will default before maturity time and the majority of firms which
default will do it with a loss close to the mean. Therefore risk measures VaR
and CVaR decrease. For example if we take a look not only to this table,
but also to the graphs added in the figure 17, we can appreciate that the
survival function of higher risks have been decrease the most and, in fact,
VaR and CVaR percents are the lowest (—3,99% and —4,20%). This is what
we have been explained before. Nevertheless, the biggest disturbance in the
risk measures is produced by modifications in the slope. But we will deeply
study these conclusions afterwards. Talking about positive changes in VaR
and CVaR percentage versus original, it is worth mentioning cases 2, 4 and
8 which most increase the survival function related with risks 9 and 10. We
also can check this fact in the figures mentioned before.
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Figure 16: Survival’s function vs VaR.
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Figure 17: Survival’s function for each case.

5.2.5 All together

To sum up, we have modified all the parameters in the way explained before
in order to have a more realistic data.
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Moreover, we show both examples in order to affirm our conclusions.
First of all, let’s focus on the example number 1. If we observe the figure 18,
which represents the percentage of variance, we can notice that the biggest
bars related to VaR match with the slopes function of risks disturbance.
Cases number 1 and 9 show similar degrees in this risk measure (—2.9% and
—2.95%) while both total nominal and norm of the X matrix percentage
have even different sign. However in both cases the average of the slopes
function are highly decreased. On the other hand cases from 4 to 6 have
analogous results. Apart from the disturbance in the survival function, the
nominal has also an important role. The main difference between case 7 and
8 relies on the nominal (0.37% and —0.41% respectively) because the rest of
the parameters are quite similar.
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Case number

Standard
1 2 8 4 5 6 7 8 g 10|Average| deviation

Total % vs
Nominal| Original

0,09% -0,21% 0,06% 0,06% 0,01% 0,16% 0,37% -0,41% -0,22%-0,17%| 0,18%| 0,13%

0,55% 1,15% 2,68% 2,19% 2,41% 2,31% 1,95% 1,41% -0,06% 1,88%| 1,66%| 085%
2,17% 0,22% 1,39%) -0,17% -0,13% 2,01% -1,07% 1,18% 1,13% -1,50%| 1,10%| 0,73%
-1,99% 0,18% -0,89%  1,13% 0,85% 0,33% 1,06% 0,98% 0,41% -1,19%| 0,90%| 0,52%
-1,00% -0,46% -1,35%  0,91% 0,07% -0,25% -0,17% -0,43% -1,55% 0,85%| 0,70%| 0,51%

:"—°? 0,10% -0,44% 0,38% 0,65% 0,99% 1,00% -0,72%-0,13%| 0,63%| 037%
nction
= 1,15% -0,57% 1,04% -0,48% -0,78% -1,08% -1,21% -0,71% -1,18% 0,65%| 0,89%| 0,28%

0,37% 0,00% -0,15% 0,98% 0,86% -0,32% 0,99% -0,61% -0,77% -0,26%| 0,53%| 0,36%
0,37% -0,67% -0,28% 0,78% -0,35% -0,62% 0,35% 0,18% -0,93% 0,03%| 0,46%| 0,28%
0,40% 0,24% -0,38% -0,37% -0,25% 0,01% 0,49% -0,11% 0,16% -0,43%| 0,28%| 0,16%
0,19% 0,02% -0,81%| 0,33% -0,29% -0,02%| -0,23% -0,03%-0,37% 0,35%| 0,26%| 0,24%
0,14% 0,28% 0,32% 0,30%-0,39% 0,02%| 0,29%| 0,16%

=
R R T R N R -

e

~

w

=X

o

(=]

Y=}

=X

10

2

8

Client's 7
with [3 2 3 45 +1 2,6

default 5

risk a

3

2

1

Norm of

Original|-0,04% -0,02% 0,02% 0,04% -0,01% 0,01% -0,04%

- | 1,24%] 2,39% 1,32%| 0,75%-2,91%-0,10%
a
Total Nom| 9,42% 9,82% 9,94% 9,83% 9,78% 9,42% 9,69%
- 1,12% 1,44%) 2,47% 2,03% 2,13% 1,68% 1,40% -3,05% 0,20%| 1,87%
CvaR

Total Nom| 9,63%10,06% 10,09% 10,19% 10,15% 10,16% 10,11% 10,09% 9,64% 9,97%| 10,01% 0,21%

Table 11: All toghether’s disturbances of the Example 1.
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Figure 18: VaR vs Norm vs Nominal vs Survival’s function of the Example 1.

In the second example, what really attracts out attention is the 9th case
where the VaR percentage has increased the most. This is due to the growth
of the slope’s function of risk 9 and 10 (2.97% and 2.37%). Furthermore,
only when the average of the slope’s function is negative, the bar is under
the zero-line. Another interesting case is case number 7. Despite the slope’s
function of risk is almost insignificant, as well as the norm of the X matrix,
VaR is increased considerably. This is not only because of the increase in the
nominal (which with a 0.45% is the highest), but also because of the decrease
in the number of clients with risk 10 (6 firms fewer).
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Case number

Standard
1 2 3 4 5 6 7 8 9 10(Average| deviation

Total % vs
N;lnal Original -0,02%: 0,20%: -0,31%: 0,18% -0,15% 0,11% 0,45%;-0,18% -0,12% 0,05%| 0,18% 0,12%
10| -0,63% -2,18% 2,53% 2,40% 1,83% -0,81% 1,25% 0,19% 2,97% 2,52%| 1,73% 0,95%
9| 1,42%; 2,29% -0,45% -0,17% -1,04% 1,42% 2,19% 2,12% 2,37% -1,79%| 1,53% 0,78%
8| -1,88% 1,81% -1,64% -1,22%; 0,56% 0,98% 0,07% -0,86% 0,70% 1,61%| 1,13% 0,60%
7| 1,02% -1,03%; 0,18% -1,04%; 0,96% 1,12%; 1,46% 0,96% -0,66% 0,62%| 0,91% 0,35%
M 6| 0,86% 0,96%! -1,32% 0,38% -0,53% 0,79% 0,71% 0,48% -1,41% -0,83%| 0,83% 0,34%
ﬂ::%‘ 5| 1,09% -0,53% -0,17% 0,45% -0,18% 0,13% -1,05% -0,12% 1,24% -0,74%| 0,57% 0,43%
- 4| 0,97% 0,10% 0,83% 0,06% 0,25% -1,06% -0,71% -0,24% 1,01% -0,77%| 0,60% 0,39%
3 -0,80% 0,56% -0,35% -0,70% 0,37% -0,93% -0,75% -0,14% 0,97% 0,18%| 0,58% 0,30%
2| -0,06% 0,30%| 0,64% -0,45% -0,09% -0,85% -0,61% -0,80% 0,63% 0,62%| 0,51% 0,27%
1| -0,10%| -0,33% -0,21% -0,78% 0,06% 0,43% 0,12% -0,53% 0,40% -0,82%| 0,38%| 0,27%
Average| -0,02% 0,19% -0,03% -0,11% 0,22% 0,12% -0,02% 0,11% 0,82% 0,06%| 0,17% 0,24%
10| -1 -5 -3 -3 -2 +4 -6 -1 -1 -1 -2 T
9| +3 +7 -1 +2 +1 -6 +7 +2 +3 +1 +2 38
8 -3 -3 5 -3 +0 +3 +0 +5 -3 +0 +0 32
Client's 7] -4 +0 -5 +0 +1 +1 -1 -11 -5 -2 -3 3,7
with 6 +7 +1 +3 +5 +1 -5 +2 +5 +10 +2 +3 4,0
default 5| -2 +1 +3 +3 -4 +6 2 +4 -6 +4 +1 4,0
risk 4 -1 -3 -4 -4 +2 +0 +1 -7 +0 -5 -2 29
3 +2 +2 +3 -1 +3 -4 +2 -1 +3 -2 +1 2:9
2] +3 +3 +2 +2 -4 +7 -1 +6 +2 +8 +3 3,6
Pl -4 -3 -3 -1 L -6 -2 -2 -3 -5 -3 Z2

% vs

Norm of

the X Original| -0,04% 0,05% 0,00% 0,01% -0,01% 0,01% 0,00% -0,02% 0,04% 0,00%| 0,02% 0,02%

Original| -0,76%, 1,42% -0,23% -0,94% 2,99% 0,74% 0,50% 0,63% 5,85% 1,14%| 1,52% 1,70%
Total Nom|10,00% 10,22% 10,05% 9,98% 10,37% 10,15% 10,12% 10,14% 10,66% 10,19%| 10,19% 0,20%

Original| -0,96% 1,29% -0,48% -0,89% 2,91% 1,20% 0,04% 1,95% 5,47% 0,89%| 1,61% 1,57%
Total Nom|10,27% 10,50%10,32% 10,28%:10,67% 10,49% 10,37%10,57% 10,94% 10,46%| 10,49% 0,20%

Table 12: All toghether’s disturbances of the Example 2.
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Figure 19: VaR vs Norm vs Nominal vs Survival’s function of the Example 2.

6 Conclusions

Our main goal has been to alter the parameters of our portfolio in order
to analyze them separately and together, and to determinate which of the
variables are the most sensitive. As we have been explaining through the
document, the four variables which have been modified do not behave the
same way. We also would like to mention that all of our results are taken for
a limited number of examples with a limited number of cases, so we have to
be careful about our result’s accuracy. The changes in the correlation matrix
do not practically interfere in the final result. In fact, the standard deviations
of VaR and CVaR due to this parameter are just 0.25% and 0.24%, and the
averages are —0.04% and —0.15%. Finally, the VaR maximum percentages
compared to the original ones that we have seen in this project are really low
(from 0.35% to —0.52%).

This has not been the case of the risk disturbance or nominal. Risk’
changes have a significant effect on VaR and CVaR: their respective averages
and standard deviations are —0.70% and —0.57%, and 0.51% and 0.49%. As
we have mentioned, we can consider that the biggest influence on the amount
of losses, and consequently the sign of the averages, is due to higher risks.
Talking about nominal, the risk measure averages have not been really high
(0.06% and 0.16%, VaR and CVaR respectively) but the standard deviations
have (0.47% and 0.40%).

We have not only appreciated relationships between these two parameters
with the risk measures, but also between them. If the nominal invested in the
portfolio is modified, we have observed that for equal quantities we obtain
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different results. On the other hand, for similar changes in the client’s risks
we have observed enormous differences. The dependence on the amount of
money related to each firm’s risk is a really important matter in this project.

However, the most significant data is the disturbance in the survival func-
tion: while the average of VaR and CVaR disturbances are 0.80% and 0.94%
respectively, the standard deviation are 3.12% and 3.20%. This means that
they could affect the total amount of losses even six times more than risk
disturbance could. In fact, as we have appreciated in the figures above, the
VarR and CVaR'’s sign is caused by the increased or decreased of the high
risks’ slope function. Again, we should stress the importance of the higher
risks as the risk measures are more sensitive to their changes in the survival
probability function.

In order to value the model’s stability, considering as the method used
for each variable, which has been explained respectively in each section and
disturbing a maximum of a 10% from the original data, we could accept any
result except for variations approximately over 10%.

If we observe in the table 13 a summary of the data obtained in each case,
we can appreciate that for disturbances under 10%, which means under the
defined limit, the results obtained for the modifications of VaR and CVaR
are strongly under the 10%. In fact, not even the maximums obtained exceed
this percentage.

CORRELATION SURVIVAL ALL TOGETHER ALL TOGETHER
MOMINAL RISK MATRIX FUNCTION EXAMPLE 1 EXAMPLE 2
VaR CvaR VaR CVaR VaR CvaR VaR CVaR VaR CvaR VaR CvaR
MIN 0,05%| 0,02%| 0,24%| 0,12%| 0,01%| 001%| 0,86%| 0,62%| 0,10%| 0,20%| 0,23%| O,04%
MAX 0,84%| 0,68%| L,65%| 1,28%| O,52%| O,78%| 4,79%| 4,85%| 2,91%| 3,19%| 5,85%| 5,47%
AVERAGE| 0.40%| 0,37%| 0,68%| 0,62%| 019%| 0,17%| 286%| 2,93%| 1,69%| 1,87%| 1,52%| 1.61%

Table 13: Minimum, maximum and average of the data obtained in each case.

It is worth noting that the disturbances related to clients’ nominal, clients’
risk and the norm of the correlation matrix hardly represent modifications
in VaR and CVaR. On the other hand, the clearest case of disturbance in
VaR and CVaR occurred when the survival function’s slope is modified. In
this case, it is possible to reach mean values of 2,86% and 2,93% for VaR
and CVaR respectively. The biggest change is obtained modifying every
parameter consider in the portfolio at the same time in the second example,
reaching maximum values for both VaR and CVaR of 5,85% and 5,47% and
even then, these results do not exceed the 10% defined.

Therefore, with all the evidences described before, we can affirm that our
model is stable.
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Appendix: Glossary

We list here the main definitions that we use in this article [9, 10]:

Asset: A resource with economic value that an individual, corporation
or country owns or controls with the expectation that it will provide
future benefit.

Asset-Backed Security (ABS): A financial security backed by a
loan, lease or receivables against assets other than real estate and
mortgage-backed securities. For investors, asset-backed securities are
an alternative to investing in corporate debt.

Bond: A debt investment in which an investor loans money to an
entity (corporate or governmental) that borrows the funds for a defined
period of time at a fixed interest rate. Bonds are used by companies,
municipalities, states and governments to finance a variety of projects
and activities.

Capital: Financial assets or the financial value of assets, such as cash.

Counterparty: The other party that participates in a financial trans-
action. Every transaction must have a counterparty in order for the
transaction to go through. More specifically, every buyer of an asset
must be paired up with a seller that is willing to sell and vice versa.

Credit: A contractual agreement in which a borrower receives some-
thing of value now and agrees to repay the lender at some date in the
future, generally with interest. The term also refers to the borrowing
capacity of an individual or company.

Default: The failure to promptly pay interest or principal when due.
Default occurs when a debtor is unable to meet the legal obligation of
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debt repayment. Borrowers may default when they are unable to make
the required payment or are unwilling to honor the debt.

Equity: A stock or any other security representing an ownership in-
terest.

Facility: A term used to describe financial assistance programs offered
by lending institutions to help companies requiring capital.

Liability: A company’s legal debts or obligations that arise during the
course of business operations. Liabilities are settled over time through
the transfer of economic benefits including money, goods or services.

Liquidity:The degree to which an asset or security can be bought
or sold in the market without affecting the asset’s price. Liquidity is
characterized by a high level of trading activity. Assets that can by
easily bought or sold, are known as liquid assets.

Loan:The act of giving money, property or other material goods to a
another party in exchange for future repayment of the principal amount
along with interest or other finance charges.

Loss: The difference between the revenue received from the sale of an
output and the opportunity cost of the inputs used.

Maturity: The length of time until the principal amount of a bond
must be repaid.

Nominal value: The stated value of an issued security that remains
fixed, as opposed to its market value, which fluctuates.

Obligation: The legal responsibility to meet the terms of a contract.
If the obligation is not met there is often recourse for the other party
to the contract.

Payoff: The act or occasion of receiving money or material gain espe-
cially as compensation or as a bribe.

Portfolio: A grouping of financial assets such as stocks, bonds and
cash equivalents, as well as their mutual, exchange-traded and closed-
fund counterparts. Portfolios are held directly by investors and/or
managed by financial professionals.
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Rating: An evaluation of a corporate or municipal bond’s relative
safety from an investment standpoint. Basically, it scrutinizes the is-
suer’s ability to repay principal and make interest payments. Bonds
are rated by various organizations such as S&P and Moody’s. Ratings
range from AAA or Aaa (the highest), to C or D, which represents a
company that has already defaulted.

Recovery rate: The amount that a creditor would receive in final
satisfaction of the claims on a defaulted credit.

Return: The gain or loss of a security in a particular period. The
return consists of the income and the capital gains relative on an in-
vestment.

Risk: The chance that an investment’s actual return will be different
than expected. This includes the possibility of losing some or all of the
original investment. Risk is usually measured by calculating the stan-
dard deviation of the historical returns or average returns of a specific
investment. A fundamental idea in finance is the relationship between
risk and return. The greater the amount of risk that an investor is
willing to take on, the greater the potential return. The reason for this
is that investors need to be compensated for taking on additional risk.

Security: An instrument representing ownership (stocks), a debt agr-
eement (bonds) or the rights to ownership (derivatives).

Security interest: A legal claim or collateral that has been pledged,
usually to obtain a loan. The borrower provides the lender with a
security interest on certain securities/assets which can be repossessed
in the event that timely obligation payments are not met.

Spread: The difference between the bid and the ask price of a security
or asset. The spread for an asset is influenced by a number of factors
(the total number of shares outstanding that are available to trade,
demand or interest in a stock, total trading activity of the stock...).

Tranches: A piece, portion or slice of a deal or structured financ-
ing. This portion is one of several related securities that are offered
at the same time but have different risks, rewards and/or maturities.
"Tranche” is the French word for ”slice”.

Volatility: A statistical measure of the dispersion of returns for a
given security or market index. Volatility can either be measured by
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using the standard deviation or variance between returns from that
same security or market index.
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