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Abstract

This paper deals with an inverse problem concerning the identification of the heat exchange coeffi-
cient H (assumed to be dependent on the pressure) between a certain material and the external environ-
ment, when only experimental measurements of the temperature are supposed to be known. The main
difficulty is that the experimental data are affected by error. We set two scenarios for the inverse problem.
For each scenario, knowing the initial and ambient temperatures, we identify function H through different
methods and we obtain estimates for the error. Finally, we perform numerical tests.
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1 Introduction

In this work, we focus our attention on an inverse problem concerning the identification of the heat
transfer coefficient H (assuming it depends on pressure) between a certain material with the external envi-
ronment. Some practical applications in which this coefficient appears can be seen in [4], [5], [6] and [7]).
The goal is to identify H to get a solution for the corresponding model, approximating some given temper-
ature measurements.

The physical problem modeled in the references mentioned above is the evolution of the temperature
in a homogeneous sample of a material placed in an equipment capable of compressing it (which will
increase its temperature) and, that is also warming up (respectively, cooling down) due to heat exchange
with an external environment that is warmer (respectively, cooler). To describe the temperature distribution
within the sample complex models based on partial differential equations are often used (see, e.g., [6]).
These equations involve functions and parameters that must be known before computing the solution. These
functions and parameters are usually determined either by experimentation based protocols ([6]) or by
solving inverse problems posed in an appropriate mathematical framework (see, e.g., [1], [2] and [3]).

In some contexts, and under certain conditions, it can be assumed that H has a known expression
(e.g., H is constant or a function with a few real parameters to identify). In these cases, the least squares
method may provide a good tool to solve inverse problems (see, e.g., [4]). However, when the goal is to
identify a function, the problem becomes more complicated, especially if the experimental data are given
with measurement errors, due to measurement equipment accuracy limitations. The challenge in this work
is to identify function H when continuity and positivity are the only information available about H .

For simplicity, let us consider an homogeneous sample and let us assume that the temperature gradient
inside it is negligible. The Newton Cooling Law and the relation describing the change in temperature due
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to the pressure variation, when isentropic changes of temperature are assumed (see [7]), provide a simple
mathematical model for this phenomenon through the following initial value problem (direct problem):{

T ′(t) = H(P (t))(T e − T (t)) + αP ′(t)T (t), t ∈ [t0, tf ]

T (t0) = T0.
(1)

Here T (t) (K) is the temperature of the sample at time t; P (t) (Pa) is the pressure of the equipment at
time t; T e is the ambient temperature; T0 is the temperature at the initial time t0; α ≥ 0 is a parameter
involving thermal expansion, density and specific heat capacity; and H is the pressure dependent heat
exchange coefficient. In order to solve problem (1), constants T0, T e ∈ R, pressure P and function H :
[Pmin, Pmax] → R are needed ([Pmin, Pmax] is a suitable range of pressure).

The values of T0 and T e can be obtained by measuring devices (thermocouples), the coefficient α
is assumed to be known and the pressure is provided by the equipment. However, function H cannot be
obtained easily. We will design strategies to enable, from experimental measurements, the identification
of function H (inverse problem); by doing so, we will be able to approximate the solution of model (1)
for other values of T0, T e and P (provided it is kept in the initial ranges of pressure [Pmin, Pmax]) without
requiring new measurements.

In order to define a suitable framework to carry out this identification, we suppose that:

• The ambient temperature T e is constant.

• The initial temperature T0 is higher than T e.

• P is a known, non-decreasing, continuous and piecewise C1 function on the time interval [t0, tf ].

• H is a positive and continuous function on the pressure range [P0, Pf ] = [P (t0), P (tf)].

The temperature measurements are assumed to have been taken during an experiment in which the entire
range of pressures has been covered. In practice, a linear pressure can be used.

We note that H is not relevant when T is close to T e. We set a threshold µ to separate it from T e (H(P )
is not identified when T is too close to T e).

2 Scenarios of the inverse problem
Depending on the knowledge one has on the solution T in [t0, tf ], we consider the inverse problem

immersed in various scenarios:

• The first one arises when a function T̃ that represents the approximate value of the temperature at any
instant of time is assumed known.

• However, the usual situation is that only a discrete amount of values T̂k approximating the values of
T at the corresponding instants is known.

For these scenarios, we will develop a “stable” method to approximate T ′ from the data and thereby
obtain a discrete number of approximate values of H for points of the interval [P0, Pf]. To this end, we must
ensure that the temperature values are sufficiently far from T e, otherwise the coefficient H would have a
negligible influence in the equation, and its identification could not be performed. We set a “threshold” as
follows:

a) In the first scenario, assuming
∣∣∣∣∣∣T − T̃

∣∣∣∣∣∣ < δ, we consider the threshold µ = m̃− T e, where

m̃ = min
t∈[t0,tf ]

T̃ (t).

If µ ≤ δ, we would need to perform an experiment starting from a higher value of the initial temperature
T0, in order to obtain a higher approximate temperature.
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b) In the second scenario, we assume a set of measurements T̂k such that |T (τk) − T̂k| < δ̂, with δ̂ > 0,

where {τ0 = t0, τ1, τ2, . . . , τp = tf} is a sequence of instants, is avalaible. We will denote by T̃ a
function that interpolates the values {T̂0, T̂1, . . . , T̂p} at points {τ0, τ1, . . . , τp} and consider δ > 0, a

bound of the norm of the difference between T and T̃ in the interval [t0, tf ], i.e.,
∣∣∣∣∣∣T − T̃

∣∣∣∣∣∣ < δ. The

threshold µ is defined from T̃ as in the previous scenario.

3 Ad hoc experiment
This section presents a method which identifies function H on the assumption that we can perform an

experiment designed ad hoc as follows: we assume measurements of temperature in an even number of
instants {tk}nk=0, which form an equally spaced partition of [t0, tf ] with step h are known. We choose the
pressure applied by the equipment as a continuous function that increases linearly with the same slope in
the intervals [t2k−1, t2k] and remains constant in the rest of the intervals [t2k, t2k+1], k = 0, 1, . . . , n−1

2 .

Thus P (t2k) = P (t2k+1) and the values {P (t2k)}
n−1
2

k=0 form a partition of the range of pressures [P0, Pf ].

Denoting by {T̂k}nk=0 the temperature measurements, we can find the approximations

H̃k ≃ H(P (t2k))

through the following methodology: for each k ∈
{
0, 1, . . . , n−1

2

}
we consider the interval [t2k, t2k+1].

Here, since pressure is constant, the solution of problem (1) verifies

T ′(t) = H(P (t2k))(T
e − T (t)), t ∈ (t2k, t2k+1).

Then,
T (t) = T e + (T2k − T e)e−H(P (t2k))(t−t2k), t ∈ [t2k, t2k+1],

where Tk = T (tk). In particular, for t = t2k+1,

H(P (t2k)) =
1

h
ln

(
T2k − T e

T2k+1 − T e

)
.

This suggests to take as an approximation of the value of H at P (t2k) the value

H̃k =
1

h
ln

(
T̂2k − T e

T̂2k+1 − T e

)
. (2)

Proposition 3.1 Denoting by σk =
T̂k − Tk

Tk − T e
,

H̃k −H(P (t2k)) =
1

h
ln

(
1 + σ2k

1 + σ2k+1

)
. 2

Remark If the temperature measurements are exact (and, consequently, all σk vanish) then this method
provides the exact values of H . 2

Remark Proposition 3.1 also shows that the error committed when approaching function H using this
method only depends on the values of 1 + σk, i.e., the relative errors of T̂k − T e with respect to Tk − T e.
As these errors are a feature of the equipment, there is the unusual fact that the error in the approximation
of function H by this methodology is independent of the function. 2

4 Iterative algorithm
It may happen that the equipment does not allow an experiment as described previously. Thus, another

strategies are developed here, in order to identify coefficient H .
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4.1 Identifying from a function that approximates the temperature

In this context, an approximation T̃ ∈ C([t0, tf ]) of T is assumed to be known. More precisely,∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣ < δ (3)

for 0 < δ < µ = m̃− T e. Since

H(P (t)) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
,

we define function

u(t) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
, t0 < t < tf

and its approximation

ũh(t) =
Rh(T̃ )(t)− αP ′(t)T̃ (t)

T e − T̃ (t)
,

where Rh : C([t0, tf ]) → C([t0, tf ]) is the approximate differentiation operator given by

Rh(v)(t) =


Dh(v)(t) + Ψh(v)(t0), t ∈ [t0, t0 + h]

v(t+ h)− v(t− h)

2h
, t ∈ [t0 + h, tf − h]

D−h(v)(t) + Ψh(v)(tf − 3h), t ∈ [tf − h, tf ],

with

Dh(v)(t) =
−3v(t) + 4v(t+ h)− v(t+ 2h)

2h

and

Ψh(v)(t) =
v(t+ 3h)− 3v(t+ 2h) + 3v(t+ h)− v(t)

2h
.

Remark This approximate derivation operator provides an error bound slightly worse than that provided
by the standard operator of order 2 (without Ψh(v)). However, with this definition, Rh (C([t0, tf ])) ⊂
C([t0, tf ]). 2

Proposition 4.1 Let T ∈ C3([t0, tf ]) and T̃ ∈ C([t0, tf ]) verifying (3) with 0 < δ < µ. Then

||u− ũh|| ≤
29M3

6(µ− δ)
h2 +

4δ
(
M̃ − m̃+ 2µ

)
µ(µ− δ)

1

h
+

αP ′
MT eδ

µ(µ− δ)
, (4)

where M3 = ||T ′′′||, M̃ =
∣∣∣∣∣∣T̃ ∣∣∣∣∣∣ and P ′

M = ||P ′||. 2

In (4) the step h appears (squared) multiplying one term and dividing another one. Hence, the optimal
estimate is obtained when choosing a value of h that balances both terms to get the minimum value. The
next result (its proof is straightforward by using Proposition 4.1) indicates how to choose such a value of h
and its corresponding estimate:

Proposition 4.2 Under the assumptions in Proposition 4.1, the smallest value of the bound in (4) is reached
when taken as a time step

h∗ =

(
12(M̃ − m̃+ 2µ)

29µM3
δ

) 1
3

. (5)

For this optimal value of time step, we have the following error bound

||u− ũh∗ || ≤

(
522M3

(M̃ − m̃+ 2µ)2

µ2(µ− δ)3

) 1
3

δ
2
3 +

αP ′
MT e

µ(µ− δ)
δ. 2
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Let h∗ be as in (5). Let us denote by n the integer part of tf−t0
h∗ , tk = t0 + kh∗ and T̃k = T̃ (tk). If we

approximate H(Pk) by H̃k = ũh∗(tk), i.e.,

H̃k =
Rh∗(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k

, (6)

for k = 0, 1, . . . , n, Proposition 4.2 leads to:

Theorem 4.3 Under the assumptions in Proposition 4.1 one has

max
k=0,1,...,n

∣∣∣H(Pk)− H̃k

∣∣∣ ≤ (522M3
(M̃ − m̃+ 2µ)2

µ2(µ− δ)3

) 1
3

δ
2
3 +

αP ′
MT e

µ(µ− δ)
δ,

where H̃k, k = 0, 1, . . . , n, are given in (6). 2

Remark Theorem 4.3 provides an estimate of the error committed when taking the optimum value h∗ as
the time step. The difficulty is that this value is unknown, since it depends on M3. Next, we introduce an
iterative algorithm in order to compute the values given in (6), from measurements of temperature, and
successive approximations of h∗. 2

4.2 Identifying from a finite number of approximated values of the temperature

We start from measurements of temperature {T̂0, . . . , T̂p} corresponding to {τ0 = t0, . . ., τp = tf} and
we assume that the error is of order δ̂. We consider a function T̃ that interpolates the previous values and
assume that the interpolation method used is such that the error δ in T is of the order of the measurement
error δ̂, i.e., δ = Cδ̂ (increasing the number of measurements, if necessary).

Once function T̃ is defined in this way, we are in the same situation as in the previous section; hence
it suffices to consider the threshold µ = m̃ − T e, take the time step h as in (5), n as the integer part of
tf−t0

h and T̃k = T̃ (tk), where tk = t0 + kh for k = 0, 1, . . . , n. Thus, the values H̃k in (6) provide an
approximation of H as in Theorem 4.3.

Next, we describe an algorithm to approximate the values of H at points Pk ∈ [P0, Pf ], for instants tk
in equally spaced partitions of [t0, tf ]. The time step of these partitions should be defined, in an iterative
way, in order to approximate h∗.

The input data are: {T̂k}pk=0 and δ̂ > 0. First of all, we construct a function T̃ (t) interpolating {T̂k}pk=0.
Next, we estimate the error δ > 0 due to the interpolation. Then, the admissible threshold µ = m̃ − T e,
under the constraint µ > δ, is obtained.

The algorithm is based on an iterative process starting from an initial guess h for the optimal time step
h∗. From this value, we consider the instants tk = t0 + kh, k = 0, 1, . . . , n, where n is the integer part of
tf−t0

h . Therefore, the values T̃k = T̃ (tk) are obtained. From these values, an approximation Λ3 of M3 is
computed as the maximum absolute value of quantities

−5T̃k + 18T̃k+1 − 24T̃k+2 + 14T̃k+3 − 3T̃k+4

2h3
, k = 0, 1

T̃k+2 − 2T̃k+1 + 2T̃k−1 − T̃k−2

2h3
, k = 2, 3, . . . , n− 2

3T̃k−4 − 14T̃k−3 + 24T̃k−2 − 18T̃k−1 + 5T̃k

2h3
, k = n− 1, n.

(7)

These formulas are based, respectively, on standard order two progressive, central and backward approxi-
mate derivative schemes of a regular function.
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From Λ3, the next value of the time step is computed (following (5)) as

h =

(
12(M̃ − m̃+ 2µ)

29µΛ3
δ

) 1
3

, (8)

and so on. The process stops when two consecutive values of h are close. From the final value of h, the
corresponding instants tk, interpolation T̃ and the quotients

H̃k = ũh(tk) =
Rh(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k

, (9)

are computed. These quantities approximate the values of H in the pressures Pk = P (tk).

Algorithm

DATA
{T̂k}pk=0: Measurements of {T (τk)}pk=0.
δ̂ > 0: bound of measurements errors.
ε: stopping test precision.
h: guess value for h∗.
Step 1: Determine T̃ and δ according to δ̂ so that µ = m̃− T e > δ.
Step 2: While the relative error in h is greater than ε:

a) Determine the new discrete instants {tk} and compute {T̃k}.
b) Compute Λ3 as the maximum absolute value of (7).
c) Compute the new value of h as in (8).

Step 3: Obtain the final discrete instants {tk} and the values {T̃k}.
Step 4: Compute the approximations H̃k according to (9).

5 Nondimensionalization of the problem

Before performing the numerical experiments with different sets of data illustrating the behavior of
the methods developed, it is convenient to nondimensionalize the problem. We want the model to involve
as few dimensionless parameters as possible. Here, it suffices to consider two parameters: the pressure
and a relationship between the initial and ambient temperature, as discussed below. We consider the new
dimensionless variables

t∗ =
t− t0
tf − t0

, T ∗(t∗) =
T (t)− T e

T0 − T e
and P ∗(t∗) =

(
P (t)− P0

)
α.

Problem (1) can be written in these new variables (see [5, pag. 57]) as
dT ∗

dt∗
(t∗) = −H∗(P ∗(t∗))T ∗(t∗) +

dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) , t∗ ∈ (0, 1)

T ∗(0) = 1,

(10)

where 
H∗(s) = (tf − t0)H

(
s

α
+ P0

)
T ea =

T e

T0 − T e

(note that H∗(P ∗(t∗)) = (tf − t0)H(P (t))). We use this approach to identify coefficient H∗ and to find
the temperature distribution for several functions P ∗ and several values of T ea.
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Remark The maximum value that the dimensionless temperature T ∗ can reach is given by

T ∗
max =

Tad − T e

T0 − T e
,

where Tad is the maximum temperature that can be achieved under adiabatic conditions (i.e., when there is
no heat exchange with the external environment). To determine this value, it suffices to consider the initial
value problem {

T ′(t) = αP ′(t)T (t), t ∈ (t0, tf)

T (t0) = T0,

whose solution is
T (t) = T0e

α(P (t)−P0), t ∈ [t0, tf ].

Since P is an increasing function,

Tad = T0e
α(Pf−P0) = T0e

P∗(1)

which leads to
T ∗
max =

Tad − T e

T0 − T e
= (1 + T ea)eP

∗(1) − T ea. 2

Remark After identifying function H∗, H can be obtained by

H(s) =
1

tf − t0
H∗ (α(s− P0)) , s ∈ [P0, Pf ]. (11)

From T ∗ we can express temperature T as

T (t) = T e + (T0 − T e)T ∗
(

t− t0
tf − t0

)
, t ∈ [t0, tf ]. 2

Remark If the order of magnitude of function H∗ is small compared to

dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) ,

this term will be dominant. Hence any function H∗ of that order of magnitude would provide values of
temperature with few differences. To avoid this problem we can modify the original experiment so that the
new one results in a function H∗ of a higher order of magnitude. If pressure in the original experiment is
given by

P (t) = a(t− t0) + P0, t ∈ [t0, tf ],

a slower increase of pressure (for a longer time in order to cover the same range of pressures [P0, Pf ]) could
be considered. That is, we can take

P1(t) = ac(t− t0) + P0, t ∈
[
t0, t0 +

tf − t0
c

]
,

with 0 < c ≤ 1. If T1 is the temperature obtained with this pressure, the changes of variable

t∗1 =
c(t− t0)

tf − t0
, T ∗

1 (t
∗
1) =

T1(t)− T e

T0 − T e
and P ∗

1 (t
∗
1) =

(
P1(t)− P0

)
α,

lead to 
dT ∗

1

dt∗1
(t∗1) = −1

c
H∗(P ∗

1 (t
∗
1)
)
T ∗
1 (t

∗
1) +

dP ∗
1

dt∗1
(t∗1) (T

∗
1 (t

∗
1) + T ea) , t∗1 ∈ (0, 1)

T ∗
1 (0) = 1.

(12)

Since
dP ∗

1

dt∗1
(t∗1) = αa(tf − t0) =

dP ∗

dt∗
(t∗),

the equations of problems (10) and (12) are identical, except that the new function H∗ is amplified by the
factor 1

c ≥ 1. 2
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Remark The dimensionless problem is governed by a different equation than the original one, and this will
be taken into account in the methods we will use:

a) For the method based on the ad hoc experiment, it suffices to note that, in each interval where the
pressure is constant, the temperature satisfies the same equation but with T e = 0. We therefore consider
the approximations

H̃k =
1

h
ln

(
T̂2k

T̂2k+1

)
instead of (2).

b) Concerning the iterative algorithm, we can say that the optimal step expression (8) and the quantities (7)
that are used for the calculation of Λ3 remain the same (replacing, of course, the roles of T̃ and T̃ ∗),
while the approximation (9) of H̃k becomes

H̃k = −
Rh(T̃ ∗)(t∗k)−

dP ∗

dt∗
(t∗k)(T̃

∗
k + T ea)

T̃k

. 2

6 Numerical results
In this section we perform a comparative study of the results obtained when using the methods consid-

ered in this paper for the identification of function H . While working on the nondimensional problem, the
value of T ea and the range of pressures are linked to a real situation. We use the P2 treatment data from [6],
i.e., T0 = 313 oK, T e = 295 oK and α = 4.5045 × 10−5 MPa−1. The choice of the pressure curve is
specified for each method and in both cases the range is from atmospheric pressure up to 360 MPa. Thus,
the maximum value of dimensionless pressure is a = 0.0162 in both cases.

Given a function H , the nondimensional function H∗ corresponding to the ad hoc experiment is, ac-
cordingly with (11), twice the function H∗ corresponding to the iterative algorithm (the first method needs
a time interval twice as long as the second).

In what follows, we omit the superscript ∗. The data for numerical tests have been obtained as follows:
with a given function H , we solve the direct nondimensional problem (10), obtaining the temperature T .
Then T is evaluated on an equally spaced partition of instants of time. We assume that in both experiments,
the measurements have been carried out with the same time step, so that we will work in the first method
with twice as many as values in the second (in particular, we take 200 in the ad hoc experiment and 100
in the iterative algorithm). The error measurements T̂k are built by perturbing Tk by means of random
oscillations of order 1% of Tk. More precisely,

T̂k = Tk

(
1 +

r(tk)

75

)
,

where r(t) = sin(qπt) and q is a random integer between 1 and 99. Function T̃ is taken as the piecewise
linear interpolation of values T̂k.

To allow an easy comparison, the same seven perturbations of temperature values have been generated,
corresponding to the values q = 3, 14, 27, 42, 65, 84 and 97. Among them we selected the two which
produces the smallest and the largest error in infinity norm in H , respectively.

After identifying an approximation of function H , we compute temperature T solving problem (10)
and we compare it with the known solution of the direct problem. Also, different values for dimensionless
parameters of the problem (the pressure curve and T ea) are prescribed and the corresponding solutions are
calculated. In order to analyze the quality of the identification, these solutions are compared to the exact
temperature.

The different values of the parameters are generated by multiplying the original value of T ea by the
factors d = 2, d = 1 and d = 1

2 and choosing as pressure curves the functions

P (t) = a sin t, P (t) = a(e2t−2 − e−2) and P (t) =
a

2
t(3− t).
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In all the figures and tables “Error” denotes the maximum norm error in H and “% Error” denotes the
percentage relative error in maximum norm of T , i.e.,

max
k

|T̃k − Tk|

max
k

|Tk|
× 100.

6.1 First method: ad hoc experiment
For this method, the value for the first parameter of the nondimensional problem is T ea = 295

18 , while
the slope of the pressure (where it is not constant) is 0.0324 (= 2a); what causes the pressure to take all
values in the pressure range [0, a] when time lies in [0, 1]. We consider the function

H(s) = 4 exp
( s
a

)
.

Figure 1 shows the identified function H (and corresponding computed temperature) for the smallest and
largest error in H .
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Figure 1: Ad hoc algorithm (Top: smallest error in H . Bottom: largest error in H)

Table 1 shows the percentage relative error in temperature (in maximum norm) for each of the nine data
sets considered, both for the smallest and largest error in H .

The error in this method (we remind that it provides exact values when there is no measurement error)
increases with the frequency of the oscillatory perturbation: the error in H grows with the value of q, being
smaller for q = 3 (the smoother perturbation) and larger for q = 97 (more oscillatory perturbation).

6.2 Second method: iterative algorithm
Now, the value T ea = 295

18 is the same as before, but the pressure increase changes (since now there is
no constant steps); in fact, P (t) = 0.0162t.
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Table 1: Ad hoc experiment. Temperature error (%). Smallest (above) and largest (below) error in identi-
fied H .

Pressure Factor over parameter T ea

d = 2 d = 1 d = 0.5
sinusoidal 0.48 0.48 0.47

exponential 0.87 0.86 0.85
quadratic 0.36 0.36 0.36
sinusoidal 1.37 1.36 3.84

exponential 5.11 5.10 5.09
quadratic 1.06 1.97 2.45

As already has been mentioned, H must be a half of the chosen in the previous method, i.e.,

H(s) = 2 exp
( s
a

)
.

Figure 2 shows the identified function H (and corresponding computed temperature) for the smallest
and largest error in H .
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Figure 2: Iterative algorithm (Top: smallest error in H . Bottom: largest error in H)

Table 2 shows the percentage relative error in temperature (in maximum norm) for each of the nine data
sets considered, both for the smallest and largest error in H .

This algorithm uses interpolation of approximate values of T at instants that are not from the original
partition. Therefore, their behavior is not directly linked to frequency of oscillatory perturbations.

In conclusion, although the size of the error in H is moderate for both methods, temperatures calculated
from approximate identifications are quite accurate (the error is always of the order of the measurement
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Table 2: Iterative algorithm. Temperature error (%). Smallest (above) and largest (below) error in identi-
fied H .

Pressure Factor over parameter T ea

d = 2 d = 1 d = 0.5
sinusoidal 0.17 0.16 0.15

exponential 0.17 0.17 0.17
quadratic 0.14 0.13 0.13
sinusoidal 1.49 1.49 1.49

exponential 4.46 4.44 4.44
quadratic 0.94 0.94 0.94

error). The first method usually provides a better approximation of the temperature when solving for the
initial parameters. However, when the identified temperature for the nine data sets is considered, the second
method is generally more accurate in the case of largest error in H and therefore it can be considered more
robust.
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