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1 Introduction

In this paper we study the asymptotic behavior of solutions of reaction diffusion equations of
the form

uy — Au = f(z,u), forz € RN, t>0 (1.1)
u(0) = ug )

where the initial value and the solutions are in suitable weighted Sobolev spaces.

The fact that equation is posed in the whole RY introduces some difficulties related
to the unbounded character of the domain. If for instance, we try to study this equation in
standard Lebesgue spaces LP(R") we have to cope with the problem that LP(RY) spaces are
not nested. In particular, constant functions are not contained in LP(RY) for 1 < p < oo and
therefore, if, for instance, the nonlinearity is of the form f(z,u) = f(u), the roots of f cannot
be considered as equilibria of the equation since they do not live in the space. Also, traveling
wave solutions connecting different roots of f(u) present the same difficulty. Note that working
in LOO(IRN ) does not help, since for example, traveling waves do not connect different roots of
f(w) in such a norm.

Another difficulty is that the standard Sobolev embeddings are not compact. This lack of
compactness does not allow to deduce compactness properties of the semigroup, which is a clear
drawback for the proof of the existence of attractors.
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Hence, standard nonlinearities like f(u) = u — u? which have extensevely studied and are
nowadays well understood if the domain were bounded, present serious difficulties when one is
faced with the problem of the asymptotic behavior of solutions in RY.

These facts indicate that we should look for other appropriate functional settings to study
equation . Nevertheless, even in the setting of standard Lebesgue spaces there are some
interesting studies of the dynamics of the equation above, see for instante [7] and references
therein. Note also that [7], [26] deal with the case of unweighted spaces, while [6] 8, 13] work in
the so called locally uniform spaces, which are intermediate between unweighted and weighted
spaces. A setting in BUC' can be found n [21], 16].

Observe that the problem for f(u) = u—u? can not be handled within the results in [7], [26]
nor 21}, 16], although it is dissipative, in some sense, in locally uniform spaces, see [8], [13].

With regards to the use of weighted Sobolev spaces, one of the pioneer works is [I1], where
they propose the analysis of a problem like in weighted spaces. The nonlinearity they
consider is of the type f(x,u) = Au+ fo(u)+ g(x) where A\g < 0 and fy has some strong growth
conditions and several restrictive sign conditions. They analyze the equation in L%(RN ) with
p(z) = (1 + |z[)?. Where LL(RY) is is defined as the set of functions u € L} (RY) such that
up'/? € LP(RN) if 1 < p < oo and up € L¥(RN) if p = +o00. In particular, if v < —N/2
the constant functions are in LH(IR™) for all 1 < p < co. They obtain attractors in some weak
topology in the case v < 0, and in strong ones if v > 0. Furhter developments of this theory
are obtained in [I8], 30, 24]. We would also like to mention the works [I] and [I7] where they
consider nonlinearities depending also on Vu.

The accomplishments of the articles mentioned above are very valuable and worth to be
mentioned although from a detailed study of their results it seems clear that a satisfactory
linear and nonlinear theory for this type of equations in weighted Sobolev spaces neededs to
be completed. With respect to linear problems such a theory must include several important
aspects. One of them is a deep analysis of the regularization properties of the linear heat and
Schrodinger semigroups in the class of Sobolev weighted spaces, including LP — L? type estimates,
which are very well known for standard unweighted LP spaces, see [27], and play a central role in
the analysis of nonlinear equations; see also Section B6 in [27] for some results in weighted spaces.
Other important aspect in the linear theory, related with the first one, is the analysis of the
generation of analytic semigroups and the characterization of their fractional power spaces, see
[20] for a general theory. These goals cannot be accomplished without analyzing in detail some
functional properties of Sobolev spaces with weights, like sobolev embeddings, density properties
and so forth. With respect to nonlinear problems, the theory should include a general theory of
local and global existence of solutions, a deep analysis of dissipative mechanisms conditions that
guarantee that solutions eventually enter in a bounded set of the space and, very important,
conditions that imply some compactness property of the semigroup that ultimately leads to the
existence of the global attractor.

As a matter of fact, having a close look at the papers mentioned above, see for instance
[11, 17], we may observe that to obtain local (and global) existence of solutions for the nonlinear
problems it is used in a strong way the particular structure of the nonlinearity. Actually, the
fact that f(z,u) = Xou + fo(u) + g(z), with Ao < 0 and fy(u)u < 0, is used to obtain existence
of solutions for the nonlinear problems. Moreover, the proof supplied in this papers does not
apply for local existence of solutions for functions of the type f(x,u) = u|u[P~! for any p > 1.
As a matter of fact local and global existence of solutions is obtained at once and the hypotheses
Ao < 0 and fo(u)u < 0 are used in a essential way. This is in sharp contrast with the standard



theory of semilinear parabolic equations where only some growth condition of the nonlinearity
is needed to obtain a well posed problem locally in time, see [20]. An explanation about this
fact can be found in the paper [10] where it is shown that problem with f(z,u) = ululP~1
is not even well posed locally in time for any p > 1 in any space Lg(RN ), ¢ > 1, for any weight
p satisfying p(x) — 0 as |z|] — +oo. It is actually shown in [10] that there exist sequences
of smooth, compactly supported initial conditions uj € L%(]RN ) with uf — 0 in L%(RN ),
and the time of existence of the solution starting at wj approaches 0 as n — +o0o. This fact
leaves little hope to obtain a general local existence result for nonlinearities f(x,u) satisfying
growth estimates of the type |%(m,u)| < C(1 + |uP~1) for some p > 1 which could obtained
via fixed point arguments in the variation of constants formula, see for instance [20]. Hence,
to show that problem is well posed in spaces with weights for nonlinearities of the type
f(z,u) = Aou + fo(u) + g(x) the function fy must satisfy some strong sign conditions.

All this problematic suggest, as we do in this paper, to consider nonlinearities that depend
on the spatial variable x, that is, of the form f(z,u), and to determine a class of nonlinear
terms such that the problem is well posed in weighted spaces. Thus, as we will show, the spatial
behavior of the nonlinear term is somehow related to the behavior of the weight. Also, in this
direction, in this paper we give a suitable theory, as sketched above, in L%(]RN ) in the case
lim;| o p(z) = 0, and in also in the case lim|,| o, p(z) = o0.

We describe now the contents of our paper.

In Section [2| we introduce a class of weights, that may go to zero or to infinity as |x| — +o0,
define the corresponding Sobolev spaces with these weights and analyze the most important
properties of these spaces. In particular, we see that if the weight considered decays to zero as

|z| — 400, the Sobolev embeddings are of the type W,?(RY) — W;,ﬂp(IRN), with ¢/p > 1,

and no Sobolev embedding of the type W, P(RY) — W,¥(RY) can be obtained. On the other
hand if rh weight goes to infinity as |z| — oo then Sobolev type embeddings, similar to the one
in unweighted spaces, hold.

In Section [3| we develop the linear theory for heat (u; — Au = 0) and Schrédinger (u; —
Au 4 V(z)u = 0) linear equations in weighted Sobolev spaces. We show that they generate
analytic semigroups, establish concrete weighted LP — L4 estimates for these two equations and
analyze the exponential type of the semigroups. Note here that differential operators like —A
or —A + V() are not selfadjoint in L/%(IRN), see [14] [15].

In Section [4] we analyze the nonlinear evolutionary problem. We give appropriate growth
conditions on the nonlinearities guaranteeing a local existence theorem, see Theorem Later
on, we impose some conditions on the nonlinearity (which are of the type f(z,u)u < C(x)u? +
D(z)|u| for some appropriate functions C(x), D(x)) that guarantee global existence of solutions,
see Theorem [£.3] and that the flow generated by the nonlinear equation is dissipative, that is,
that we have a bounded absorbing set.

In Section 5| we study the compactness properties of the nonlinear semigroups and show
that the system has a global attractor in weighted Sobolev spaces. We also analyze other
important properties of the asymptotic behavior of the flows, like the existence of the so-called
extremal equilibria (see [25], [26] 13]), that is, two equilibria ¢, < ¢pr of the equation with
the property that all the asymptotic dynamics of the system is contained in the “interval”

[oms ] = {u(x) = om(z) < ule) < ou(z)}.
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2 Weighted spaces

A weight is a continuous and strictly positive function p : RY — (0, 00).
The following class of weights was used in [7].

Definition 2.1. We say that a weight function p : RN — (0, o) is in the class R,,. with
k€N and p; > 0 if:
i) p € CHRY)
i) |DYp(z)| < pjp(x), for v € RN, |a| = j with 1 < j < k.

In particular, we say that p is in the class Roo if the condition above is satisfied for every
ke IN.

<3Pk’

Example 2.2.

i) The weight p(z) = (1 + |z|*)7, z € RN, v € R, belongs to the class R, ,, with p1 = 2|7,
p2 =4[y = 1] +2[y|.

i) Assume p(x) is a C2(RN) weight such that p(z) = e¥1*l, v € R for all |z| > 1 then p(z) is in
the class Ry, ,,, for some p1,pa that depend continuously on .

Now we summarize some properties of this class of weights that will be used further below.

Lemma 2.3. Assume p is in the class R, ,,. Then
(i) The weight p.(x) := p(ex) is in the class R.,, .2,
(17) We have p(z) < p(z — y)emm'y', z, y € RN. In particular p(z) < eC1*lp(0), where
C = V/Npi. That is, the weights of the class Ry, p, have at most an exponential growth in
infinity and moreover

) VNpila-yl,
p(y)
(iii) If p(z) = (1 + |z|?)7, with v € R, we have

pgi <M1+ [z -y

)

and p € LY(RY) iff v < =N
(iv) If p € C2(RN), is such that p(z) = e¥1*| for |z| > 1, with v € R, then

o)

< celll==Yl for each z,y € RN
p(y)

and p € LY(RN) if vy < 0.

Proof. Parts (i) and (i¢) are immediate.
(43i) This is equivalent to prove that p(x)p(z) < Cp(z + 2), for each z,z € RY, if v < 0 and
p(x)p(z) > Cp(z + 2), for each x,z € RV, if v > 0.



From the Cauchy-Schwartz inequality

1+ |z + z\2 <2(1+ ]a;\Q)(l + \z\2)

From here, if v < 0 we have [(1 + |z|?)(1 + |2*)]" < (3)7(1 + |z + 2|?)? and if 7 > 0 then we
have (1 + |z + z|?)7 < 27[(1 + |z|?)(1 + |2/*)]7. In both cases we get the result. On the other

hand, the integrability condition is obvious.
(tv) For x € B(0,1) and some mg = mq(7y) we have

< = My < in e"# < mgel?l, 2.2
(z) < Zerg?oﬁfl)p(Z) 0 =<mo_rain €7 < moe (2.2)
Also, for each y € B(0,1) and some m; = m1(7y), we have
YNyl < vzl < ; < ) 2.3
VIS max @ <y min p(z) < map(y) (2.3)
From (2.2) and (2.3]) we get
alkd
p(z) < Momne mom1e’#1=1Y for each x,y € B(0,1), with v € R. (2.4)
p(y) elvl
On the other hand, for |z| > 1, |y| > 1
p@) _ e e (2.5)
ply) el
When || > 1 and y € B(0,1), we use (2.3)) and the definition of p(z) to obtain
ple) _Mmi e, (2.6)
ply) = el
Finally, if z € B(0,1) and |y| > 1, using (2.2)) and the definition of p(x)
p(r) < el — mge ==l (2.7)
o) = ol
From (2.4), (2.5)), (2.6) and (2.7)) we take C' = max{mom1,1,m1,mo} to obtain,
”Exg < C(y)ellel=ll < ¢(y)e"*¥l for all 2,y € RY, with~y € R
Py
Now we have the following lemma which will be useful in the next section.
Lemma 2.4. If pe R=R,, ;... p, then
|D%p% (z)| < Cp*(x), for all|a| <n, and w € R.
where C' = C(n,w, p1,p2, -, Pr)-
In particular, for everyw € R, p € Ry, .. 5, with p1 = ... = p, = C, and if w € (0,1) then

pi can be taken independent of w.



Proof. We proceed by induction in the order of a.
1) (a) We prove the result for |o| = 1. taking derivatives and using the assumptions we have

10ip" ()] = w|p" ! (2)[dip(x)| < p1|w]p® (). (2.8)
(b) If | = 2.

10j0ip" ()]

| 93 lwp® M (@)dip(a)] | = | wlp® " (@)9;0:p(x) + Bip(2)0; (0 (@))] |
(lelpz + fwllw = 1163 ) o (a).

IN

where we have used .

2) Assume the result for |a| < n and for all w € R. Then we show it holds for |a] =n + 1
and w € R. From the case |a| = 1, using Leibniz’s rule, the induction assumption and p € R =
Ry, ps,....ons1 We have, for some & with |&] =n — 1,

D"(z) = (DO)p"(x) = D*[wp" ! (2)ip(x)] < lw Y CasD?(p"~" (2))D** (9ip(2))|

B<é

< D Capp" (@)D p(a)].

B<La
Hence |D%0%(@)] < S peq Capn® (@) Carsiin(a) = Cio® (@)
Given a weight p(x), we define the weighted Sobolev spaces as follows, see also [6].
Definition 2.5.
i) For 1 <p < oo, we define

Lp(]RN) —{uELlOC(]RN):/]RN lu(x)|Pp(z) de < o0}, 1 <p < o0

with norm [Jul| pgry = </ |u(z)Pp(z) dx) !
P RN

it) For p = oo we define

Ly*(RY) = {u € L5, (R™) : sup |u(z)|p(z) < oo}

zeRN

with norm HUHL?(RN) = sup,ern |u(z)|p(x).
In a similar way, we define the weighted Sobolev spaces WaP(RN).

Definition 2.6. For k € IN, 1 < p < oo we denote W, ’p(]RN) the space of ¢ € LY (RY) with
distributional derivatives D*¢ € LY (R™) for all |a| < k.

We also define W, ’p(]RN) as the Banach space of all ¢ € VVl]Zf(]RN) such that the norm

6y = 3 106 paem) < o0

lal<k



Remark 2.7.
i) If the weight satisfies 0 < m < p(z) < M, for x € RY, then the spaces LH(RYN) coincide
with the spaces LP(RY), with equivalent norms. In the same way the weighted Sobolev spaces
coincide with the standard Sobolev spaces WHFP(RN).

Therefore, the natural case to consider are: a) weights that go to infinity at infinity and b)
weights that go to zero at infinity.
i1) Observe that if the weight verifies that for all small e > 0,

lim plez)

:Cg>0

then the weights p(x) and p:(x) = p(ex) define the same spaces, with equivalent norms.
This property is satisfied by the weights p(x) := (1 + |z|?)Y, v € R, but not the C*>(RY)
weight such that p(z) = e, for all |z| > 1, v € R.

Now we present some relationships between weighted and unweighted Sobolev spaces.

Lemma 2.8. (i) If p € LY(RY) then L®(RYN) — LLH(RY), for each 1 < p < 0o and if p > q
then LH(RN) — L(RN).
(i3) In any case LP(RY) N LH(RYN) is dense in LH(RY), for 1 < p < oo.

Proof. (i) The first part is immediate. If p > ¢ > 1, then we have for a suitable 0 < a < 1, to
be chosen:

[ o o< | [ al : [ o) o]

ap _
q

p—q
p

Taking 1 and from the integrability of p(x) we get that

1
ol gy < Nl g /R pla) de)s.

(i1) Tt is easy to see that given f € LH(RY) the sequence {f,} C LP(RN) N LH(RY),

| flz), itz e B(0,n)
Jn(@) = { 0, if, z ¢ B(0,n).

satisfies f,, — f in LH(RY).g
Now we establish an isometric isomorphism between weighted and unweighted Sobolev spaces
which will be used to prove several properties of the former ones.

Proposition 2.9. Assume 1 <p < oo, k€ NU{0} and p € R, ... ».- The mapping
Jp ka’p(RN) — WFP(RYN), Jy(u) := up'/?

is an isomorphism which is moreover an isometry if k = 0.
In case p = oo, the mapping

. k,oomN k,0omN I
Joo : WP (RTY) — WH2(RY), Joo(u) 1= up

is an isomorphism which is moreover an isometry if k = 0.



1
Proof. Let u € Wf’p(RN) then we show that up» € W*P(RY). By Leibniz’s rule and Lemma
we have,

@) By = 30 1D (@) vy
la| <K
< XX [ CasdD @D ) do
|a|<k B<a
< Y6 [P u@lola) de
18I<k
From here we get ||J,(u )HW,W RNy < ClHUHW’W(RN) Consequently, the mapping J, is well

defined, one to one and continuous. By the open mapping theorem, the inverse is continuous.
Hence, it is an isomorphism, If £ = 0 we have

e AL R 7 O BACHI
that is, J, is an isometry.
The case p = oo is analogous.

The next definition holds for any interpolation method. For details see [6]. We will use below
the complex interpolation method, because in this case we can characterize the fractional power
spaces, as we will show below. See [29].

Definition 2.10. For 1 <p <oo, k € NU{0} and s € (k,k+ 1) we define 6 € (0,1) such that
s=(1—-0)k+6(k+1), that is 0 = s — k. Then we define the intermediate spaces as

WHP(RY) o= [WEEEPRY), WP (RY)]y,
and
s, Ny . k+1, N k, N
WoP(RY) = [W,7HP(RT), WP (R™)]o.-
where [-,]g is the complex interpolation funtor, see [2]
From Proposition and the properties of interpolation we get then

Lemma 2.11. Let 1 <p<oo, k€N, p€ Ry, ps,...p., and 0 < s < k then

......

Ty WEP@RY) = WPRYN), () = up'?

is an isomorphism.
If p = 0, then
. §,00 N $,00 N _
Joo : WIP(RY) — W>2(R™), Joo(u) = up

is an isomorphism.q

Now we establish Sobolev type inclusions between the spaces Wf P(RN) and L7, (RY) with
pP

weights in the class R, ,,.... p,.-



Lemma 2.12.
i) Let 1 <p<oo, k€N, peR,  , and0<s<k. Then

< HLif s< X
s N ng(RN) Withpgq{ = N-sp Zf>3N »
vap(]R )f—> pP N N <OO, Zfs_;
o0 .
Lp%(R ), if s> 2.

=z

it) Let 1 <p<g<oo, k€N, peR,, ;. ,0<0<s<k, ands—%Za— . Then

WiP(RY) C W”%Q(IRN ).
o
If ¢ = oo, under the same conditions above we have the embedding

WHP(RY) C W”%OO(IRN).
p
Proof. Case i) is a particular case of case ii) with o = 0. For case ii), if ¢ < oo, consider the
following commutative diagram

wep(RV) e W(RY)
P pp

WoP(RY) = WoeRN)

Let u € W,P(RY) then by Lemma we have that J,(u) := up% € W*P(RY). From
hypothesis s — % >0 — % and then

WHP(RN) — WoI(RN).

1
Then upr € W24(RY), and now we determine the weight ¢ such that using the isomorphism

in Lemma [2.11]

Jy s WEIRY) — WoIRN),  Jy(u) = up?/?

14 — ypr — F o,q(R N
we have up'/? = upr. From here p = pr and thus we get, u € W7 /(RY).
pP
The case ¢ = oo is analogous.
We end this section with some remarks about the existence of Sobolev like embeddings for
weighted spaces. The existence of such embeddings will be of importance for the evolution

problems.

Remark 2.13. 1.— For weights p(x) — oo, as |x| — oo and, say, p(x) > 1, for example,
p(x) = (14 |z|?)Y with v > 0, if ¢ > p we have the following inclusion

Lq
p

(RY) — LI(RM).

S



In fact, if u € L7 (RY) then since 1>1, we have
pP

/R Ju(a) 9p(x) da < /R Ju(a) 1% (2) dr < oo,

and then u € LH(RY).
Hence, we have the following embeddings similar to the ones in unweighted spaces

<qt =22 z'fs<%

LYRN) withp < N—sp’
W;’p(RN)<—> p(RT) withp < q < 00, ist%
LS (RN), if s > &
pP P

2.- On the other hand, for weights p(z) — 0 as |x| — oo one can construct ezamples for

which, for q > p,
LYy (RY) o> LYRY).
pp

For this, let p(x) = (14 |z|?)Y with v < 0, ¢ > p, and u(z) = (1+|z[?)", with r to be chosen

below. Then u € LY, (RYN) if and only if qr + % < —%, by Lemma which is equivalent to
pP

r<(=F - %)%.

On the other hand u ¢ LY(RYN) if rq ++ > %, that is r > (% —7)

Since q > p then we can find r such that

—-N
(& =)

1

.

1 —N 1

S<r< (= - ﬂ),

q 2 Pq

and we get the statement.
Finally, one can easily see that u € Wf’p(]RN) if (r—E)p+vy < =X, thatis, r < (F—7)
Hence, if v < —%, qg>pand k >0, we can chose r such that

S
+
SIS

(ﬂ_ )1<r<(ﬂ_ )1+§
9 Vg = 2 VT3

and then
k, N N
W P(RY) o LIRY)

and there are no inclusions as for the unweighted case.
Finally, the above holds if —N/2 <~ <0, ¢ > p and some k > 0.

3 The heat and Schrodinger equations in weighted spaces.
In this section we present some results for the linear heat equation in weighted spaces L‘Z,(IRN ).

u — Au =0, zeRY, t>0.

We will prove that the realization of the linear elliptic operator —A in LH(RY), with a weight
in the class p € R = R,, ,,, generates an analytic semigroup.

In fact this result is obtained from Theorem 5.1 in [6], which holds for more general elliptic
operators.

10



Proposition 3.1. Assume p € R, ,,. For any 1 < q < oo the linear unbounded operator
—A in LYRN), with domain W,)Q’q(IRN), is such that, A generates an order preserving analytic
semigroup {S(t) }+>0-

In particular, the heat equation

w—Au=0, zeRN, t>0
u(0) = up € LI(RN)

has a unique solution u(t) := S(t)ug for t > 0 which is given by

—|z—y|?

u(t,z) = S(tyug = (4rt) 2 /R e ug(y) dy. (3.1)

The fractional power spaces of —A in LH(RY), denoted Hy"'(RN) coincide with the spaces
Wf?’q(]RN): for 0 < a < 1, given in Definition [2.10),

Proof. Consider the following commutative diagram

—A
Lg(RN) . Lg(RN)

Jql TJQ_I

LIRY) —2~ LyRY).

—1

1
Multiplying —Awu by pe, and using u = wp ¢« we get

1 11 2 Vp 1. Ap. (=31 |VpP?
Aw:= (—Au)ps = —A(wp 1 Jps = —Aw+ —(—\WVw + [-(—5) +
(—Au)p (wp™a )p q(p) [q(p) . )p2

Jw (3.2)

Since p € R,, ., then A has bounded coefficients and we can use the results in [3], to obtain that
the realization of A in LI(RY), with domain W24(R") is a sectorial operator in L¢(R") and
the fractional power spaces coincide with the complex interpolation spaces between W24(RV)
and LI(RY), as in Definition The rest follows from Theorem 5.1 [6].

That is satisfied follows from the density in Lemma and the estimates in Proposition
below, with r = ¢. From this, we get that the semigroup {S(¢)}+>0 is order preserving in
LE®RY). g

We preset now some results on the solution of the heat equation in the spaces L‘Z,(RN ).
Observe that the norm of the solution is estimated in a weighted space with a different weight
than that of the initial data.

Proposition 3.2. For each 1 < ¢ <r < oo and ug € Lg(RN), we have, for a certain constant
M andt >0
(i) For each weight p € Ry, ,,

lu(®)llpr, @y < Mt G4 eV 07T D g | g vy

ot =N 2 Nt ﬂ(l,l) (3'3)
()l zog vy < Mt2a [L+ e 207 [lug| Lo mv),

0d

11



(i) In particular if p € C2(RN) is such that p(x) = e®l, for |x| > 1, with u € R, we have
replacing piN by |ul?,
(iii) If p(x) = (1 + |2]?)7, v € R then

[y

—Nl1_1 i}
(), vy < ME2 a4 0] fluoll g v)-
q

’ -~ bl
()|l o oy < Mt2a [1+1 o ] Jluoll pgmn)-

pd
Proof. Using (3.1) and multiplying by p € R, p,

—|z—y|?

u(t, x,up)p(x) = (47Tt)% /]RN e u(y)p(x) dy = (47Tt)% /RN e_‘%yﬁ Zgiuo(y)p(y) dy.

eVNerlzl in case (i)

From Lemma [2.3) we have % < CR(|z — y|) with R(|z|) = ¢ el#ll?l in case (ii) ; and
(1+ |22)P, in case (iii)

then we get

—le—y|?

(o) < CUmt)F [ TRl o) o)) do

122
Denoting M (t)(z) := e%R(|z|) we have
—N
[u(®)pll -y < Cr(4mt) =7 |[M(E) * [uolp| L)

Young’s inequlity, see [12] page 77, implies that with % = ]% + % —1>0,

-N
[u()pllLr@may < Cr(dmt) 2 [|M (8| Loyl | Lomay- (3.4)

Now, we estimate the integral above. For the case (i), we have

1
a2 > 00 o
I(t) = HM(t)HLp(RN) = </ e( |4t‘ )pe\/ﬁpl|Z|P dZ) p — O(/ e(Tt"’\/ﬁplr)prN—l d'r)%
RN 0
Let y(r) = 74—’: + v/ Npyr, which is positive in (0,4tv/Np1) and negative in (4tv/Npy, 00).
In the interval [0,4t\/ﬁ p1] the maximum value is attained at the point r = 2t/ N p1 and the
maximum value is tp? N. Since _4—’;2 +VNpir < _8—’;2, if r > 8v/Npyt, we get

77”2;0 77‘2 P
I(t) < C(/ 677,1\/—1 dr _|_/ G(T-"—\/NPlT)PTN—l dT‘)
r>8tV/Np; 0<r<8tv'Np;
(3.5)

In the inequality above the second term can be bounded above by the area of the square of base
length 8v/ Npit and height the maximum value of ePtPiN , that is,

_r2

eGar VNP N=1 gy < PN (83/N p )N (3.6)

/ogrgst\/ﬁpl

12



and from (3.5) and (3.6)) we obtain

[un

P

2
I(t) < C’</ e s N1 dr—l—e”t”%N(&\/ﬁpl)N)
rZStx/ﬁpl

Using the change of variables r = 2v/8t, we get
1
F 1
I(t) < Ctr ( / e 7PNy téVeP?th> Lot (1),
2>v8tV/Npy

~ T ePINPE s

<C, t~0, and then Ip(t) < C(1 +t%6p%th) for all ¢ > 0, which

Thus Iy(t) = {
implies
M) oy = I() < Ct2s (1 + 2PN, (3.7)
Resuming the proof, from and we get

—N 1 N
lu()pll ey < Ct 2 C70) (14 120 P ugpl| ooy

where p, ¢ and r satisfy 1 — % = % — %
Finally, we get
lu(®)pll oy < Ct2 G0 [1 4 AN R 0 Jlugpl| o). (3.8)
Replacing p by p%,
lu(®) o, ey < CE2 G (14 N E ] flug | g vy (3.9)
;

P

If r = oo, we consider (3.8) to get
=N Nr_1
lu(t)pll oo vy < Ct 20 (14 AV 20173 ugpl| o vy (3.10)

Replacing p by p%, from |D and |i we get (3.3]).

The case (i7) is immediate.
For the case (i4i), with the change z = wv/t we get in ||

122 :
Mgy, = ( [ >p(1+,z,2)mpdz>
RN

w2

1
= </ el—3 )p(1+|w\/ﬂ2)p|7|t% dw)p
RN

£ () 20y g
< tx(C / el T P(1 + |wVi?PN) dw
RN
< Ctzﬁ[/ (F22)p depM/ e (ZE |y 201 dw]"
RN RN
< Ctrw(1+ M), (3.11)

13



Hence, considering (3.11)) in (3.4) we arrive at

N1
lu@)pllpr@yy < Cat > Pl (1 + 7)) ugp pagmy.-

SNp1_1
[u(t)pllLr gy < Cat 2 i + 1) [uopll Lagr)- (3.12)

1
Replacing p by pe, we get

ol

—_Nr1_1 e}
(), gy < Cat 2 L6 F 1+t 0)|luoll Lo gv)-

pd
1
If r = oo, from 1) replacing p by p¢ we get

=N Il
[u(®)ll Lo vy < Cot 20 (1410 )|luol| gm0

pd

Observe that the key point in the proof above is the Gaussian structure of the heat kernel.
Hence, the results above for —A can be obtained for other elliptic operators with a similar bound
for the corresponding parabolic kernel. Therefore, using the results in [16] we have the following
corollary,

Corollary 3.3. Assume the differential operator L is given by

N
L(u) == — Z 0; (am(x)aju + ai(m‘)u> + bi(z)0iu + co(z)u
i,j=1
with real coefficients a; j, a;, b;, co in L>®(RY) and satisfying the ellipticity condition

N
Z a; ()& > al€]?, for some ag > 0, and for each & € RY.

1,j=1

Then the fundamental solution of the parabolic problem u; + Lu = 0 en RN satisfies a Gaussian
bound

le—y|?

0 < k(z,y,t,s) <C(t— s)%ew(t_s)e_c @) fort > s andx,y € RY.

where, C, ¢, w depend on the L norm of the coefficients.
Therefore, the semigroup generated by —L is given by

u(t,x) :=Tp(t)ug = /]RN k(x,y,t,0)up(y) dy

and satisfies the estimates in Proposition [3.2

14



For its importance in applications we discuss in this section Schrodinger operators in weighted
spaces, with p € R, ,,. Hence, we consider the linear parabolic equation

up — Au =V (x)u, zeRN,t>0
u(0) = ug € LI(RY)

and we consider a class of potentials that admit local singularities and have no prescribed
behavior at infinity, that we denote Lg(RN ), 1 <o < oo, which is defined as

Lg(RY) = {V € L, (RY) : sup /B VI dy < )

zeRN

with norm

IVlLg @y = :Elllé)N IVl (B1))-

These spaces are named uniform spaces in the literature, see for instance [6] and references
therein.

The results below hold for more general operators than —A, but we will focus in operator of
the form —A — V(z)I, where V is a potential in L (RY), 0 > ¥, o > 1.

Then we have

Theorem 3.4. Let V € LG(RY) with o > %, o > 1. Then for each 1 < q < o the operator

A+V(x)I, with domain Wg’q(]RN), generates an order preserving analytic semigroup in L3(RYN),
Sy (t), and with the same fractional power spaces than —A.
The semigroup is given by the variation of constants formula

t
u(t) = ey = eAlug Jr/ AV (2)u(s) ds.
0

Proof. From Proposition [3.1] we have that for each 1 < ¢ < oo the operator A with domain
W249(RN) generates an order preserving analytic semigroup in L%(RY).
Denote by P the operator

P: L (RY) — LYRY), P(u)(z) = V(z)u(z).

We show below that P is bounded if % + % = % and 1 < ¢ < ¢. For this, we first decompose

RY in cubes in the following way: for each i € Z, denote by Q; the open cube in R centered at
i, with sides of length 1 and parallel to the axes. Then @;NQ; = 0 for ¢ # j and RY = Usezn Qi
From Hoélder’s inequality

IValldy gy = /]R V(@) (@) () de =Y
i€ZN

/ V(@) (@) p(x) da
Qi

q Al inty o1
z‘% ¥ J(Qi)Hqu ”U(Qi)’ with o * g (3.13)

IN

which is possible since 1 < ¢ < 0.

15



Sobolev inclusions imply then

N —N
W?29(Q;) — L*(Q;), with s such that 2 — — = —
q s
or equivalently % — % = 1 , with constants independent of i. Since % 17 o —|— L using o > & we
get g <r <s.
Interpolating with 1 = 0 + (1= 6)L we get
(1-6 1—
lupt 12, o, < luos |5 lupt %y < lupt Spaniy 1up? 12,
Now Young’s inequality yields
lup¥ 10, < ellup® (% s o) + Cellup® [0 g
and then
1
||Vu||Lq(]RN < Z ||Vqu(Qi)HUPq ||%T(Qi)
iezN
< W lgmen 3 [0 nag + Cllunt I,
€ZN
<

IV g oy [ iy + ol RN)}
Hence, relabeling the coefficients, we get

IVl gy < el gy + Cellul g gy

W29(RN)

By [20], Theorem 1.3.2, we have that A+ V (x)I generates an analytic semigroup in L3 (RY).
Now we prove that —A — V(z)I has the same fractional power spaces than —A. For this,
by Theorem 1.4.8 in [20] it suffices to prove that

[VullLamny < CHuHHZa,q(RN), for some 0<a<1.

We estimate above and below (3.13]) and for this we use the inclusions

N —N
H?9(Q;) — L"(Qi), for 20 — — > —, 0<a<1
q T

with constants independent of 4.
Using the relationship among o, r and ¢ as in (3.13)) we get 2a > %, which holds for some
0 < a < 1 because o > % From this we get

Vel fo gy < CIVITe vy D HUP"HHzaq ) < ClIVIILg @y upi [FR——
iezN
where the last inequality comes from Lemma 2.4 in [7]. Since the norms ||ull 2o gy and
p

1
[up || fr2ea(mvy, are equivalent, we get

[VullLggvy < C’HVHL?J(RN)||u||H3a,q(RN), for some 0 < a < 1.

16



To prove the order preserving property observe that from the results in [27], the semigroup
generated by A + V (x)I is order preserving in LI(RY), for 1 < ¢ < co. Hence, from density, see
Lemma we get the result.

In the following result we prove weighted LY — L" estimates for the Schrédinger semigroup,
analogous to the ones for the heat equation.

Theorem 3.5. Let p € R,, ,, V € LG (RN) with o > §. Then there exists constants a and
M depending only on N, o and ||V||Lg(]RN) such that for each 1 < g < r < oo, t > 0 and

up € LYRY) we have the following estimates

_Np1_ 1
HG(AJFV)tUOHLTE(RN) < Metti 2 [g r]HuoHLg(lRN)
0d
ﬂ
uol| o myv) < Me®t 2 [woll g rav)-

pd

He(A-i—V)t

Proof. We prove below that the estimate
ﬂ[l,l}
[u(®)pllpr@may < Mt 2 e Hu(0)pll ), 0 <t <9 (3.14)

holds for some small time interval 0 < t < 79, for some 79 and M, depending only on N, o, and
[VlLg gw)- Once we show this, we extend the estimate for arbitrary ¢. In fact, if £ > 79 then
we decompose it as t = n1g + s for some 0 < s < 79. Iterating n times with ¢ = 7 and
denoting u(t) = e+, we get

lu®)pllrmyy < Mllu(nmo)pllprmay < M?|Ju((n — 1)70)pll - (rvy

=Nl_1
< M ulro)pl gy < MR T

||U(0)P||Lq(1RN)7

where we have used ((3.14)) for time 7y in the last step. Hence, since 1o < t < (n+1)719, t = n1o+s,
we get for t > 719

i[l 1

n T at, =N [1-1
lu()pll ey < Mg 0 u(0)pll pogrry < Mie®t 2 e u(0)pll pogmny.  (3.15)

Putting together the estimates for 0 < ¢t < 79 and t > 79, we get (3.15]) for any ¢ > 0. Replacing
1

p by pa we get the result.

Now we show the estimate for 0 < t < 79, and some small 75 > 0.

Denoting u(t) = ATV the semigroup AtV can be expressed in terms of the vari-
ation of constants formula as

t
u(t) = ey = eAlyg +/ AV (2)u(s) ds. (3.16)
0

Then, for 1 < ¢ < r < oo and ug € LHRY), multiplying (3.16) by p € R, ,, and taking the
norm in L"(RY)

t
lu(®)pllLr@ny < lle®uo pll ey +/0 12 Va(s)pll L) ds

17



1

N1l
From the smoothing of the linear heat equation in Proposition for fi(t) = (1—|—ep%Ntt7 [;_EH})
and fo(t) = (1+ ep%Ntt%[%_%H]) we have

N1 t N1
lu@)pllpr@mry < Mt 2 s T]fl(t)Hu()pHLq(]RN) +/o M(t—s)" 27 ot — s)[Vu(s)pll Ly ds

for some T to be chosen. N
Since 1 — % +21and 1—21+ 1 areless than 1, for t2 < 1 we have |f1(t)| <2 and |fa(t)] < 2,
for t € [0, 9], for some 7y independent of ¢, r, 7. Thus,

(3.17)

with % = %—i—%, where we have used Holder’s inequality in the last step. Defining 1 := max {0/, 7}
then we can always find 7 > 1 such that the above is satisfied.

According to the choice of 17 we have that the exponent in the integral above satisfies:
1 <r <o’ then n=0¢" and thus 7 = 1. If »r > ¢’ then n = r and 7 > 1. Therefore

7( - 27" = 20
2°T N

N 1_1)< TA-H=g<f <1 sil<r<o
rm T gy <1, sir>0

The rest of the proof is done in several steps.
Step 1.— AssumerZa’andOﬁ%(%—%)ga,wherea:%<1if0<oo,ora:%,if
o = oo. With this, (3.17)) leads to

Nl

_ N1 1 t _N
lu@pll prmny < 2Mt 2™ ugp|| pagray + 2M |V ]| g vy /0 (t — 5)7 2 ||u(s)pll 1 () ds.

N1l
sli—7

1
Using the auxiliary function h(t) :=¢2'a vl [u(t)pllr(mny, we have

t
hit) < QMHUOpHLq(RN)+2MHV”L‘{](]RN)tg[;i]/(t—s)‘grh(S)s2[qr] ds
0

Ni_1 t N O _Nl_1
< 2Mluopll oy + 2M IV e vyt * 5 sup h(s) / (t—s) ws i+ s,
v 0<s<t 0
(3.18)
Now we change variables as s = zt to obtain
t Ay e vy [ oy
/(t—s) 205 24 tids=1¢t 21 24 T/(l—z) 20z 2la Tz
0 0
Using this in (3.18)
1-N ! _N N1
h(t) < 2MJuop| aggny + 2 MIV | g )3 sup h(s) / (1-2) % 2 a
0<s<t 0
(3.19)

18



The integral above is finite with a bound independent of ¢ and r, since we are assuming % [%— 1] <

s
a < 1. Hence, we can chose 79 > 0 depending only on My, o and ||VHLL{](RN), such that

_____ 1
7o B VIige my2M [ (1—z) 2z 2l dz < 5
Thus, from (3.19)), for 0 <t < 79 we get
1
h(t) < 2M|uopll Loy + 5 Sup h(s),
0<s<79
and then there exists 75 such that for 0 < ¢ < 19 we obtain
h(t) < 4AM|luop|l Lorry-
This implies
_ﬂ[l_l]
lu@)pllLr@yy < 4AME 2t uopl| paray (3.20)

as long as r > ¢’ and 0 < %[% — %] < a, for some 79 with 0 <t < 7.
Step 2.— Assume 1 <r <o, 1<qg<r.
If 0 = oo this case is empty. Hence, we assume below that ¢ < oc.
If 1 <r <o, we have n = ¢’. Thus for 1 < ¢ < r, equation (3.17) turns into

1

_N(1_ 1 t _N
lu@®pll L@y < 2Mt 2 Juopl| gy +2M||VHL5(IRN>/O (t = s)" 2 [[u(s)pll Lo (ravy

Considering r = ¢’ in Step 1, we have that for all ¢ with 0 < %(% -H< N the estimate 1’

r/ = 20>
holds with r = ¢’. But this last restriction when r = ¢’ is equivalent to 1 < ¢ < r, then we can
use the estimate (3.20) for r = ¢/ and 1 < ¢ < r, to obtain for some 75 and 0 < ¢ < 79,

_ Nyl _ 1
lu(t)pll r gy < 2M 2 L™ Hlugpl| o)

N

t _N _Npl_ 1
+ 8M2||V’L%(]RN)HUOPHL‘?(]RN)/0(t_S) 20 § z[q U,]ds.

Changing variables as (3.19)) we get

_ Nyl _ 1
lu(t)pll gy < 2ME 2 5™ lugp]| o)

N =Nrl_ 1 1 N a1
+ SM2||V | g movy [uopll ooyt "2t 2 L / (1—z) "2z 2l dz.
0

This integral is finite and bounded by a constant C' only depending on N and o. Hence,

1

_N(1_ 1 _N
lu(®)pll oy < 2ME™ 2 ™ fugpl| paravy (1 + |V ]| g, ravyAM Ot~ 27 )

Therefore, for some 79 depending on o, N, and ||Vl s )

A _Np1_1
() pll r gy < Mt 21 flugpl| oy, 0 <t < 70
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Step 3.— Summarizing Steps 1 and 2, we have found constants M, 7y depending only on NV,
o and HV||L5(RN) such that for all 1 < ¢ <r < oo with %[% — 1] < o, we have
1

_ Nyl 1
lu(t)pll gy < Mt~ 2™ lugpl| Loy, 0 <t < 7. (3.21)

Now observe that there exists a natural number K and a partition of the interval [1, o], of the
form 1 =1y < r; < ro..... < rg = 00, and such that for each ¢, r with rp, < q¢ < r < rgqq, we

have §[1 —1] <q.

q T
Therefore, for each 1 < ¢ < r < o0, there exists k£ and h such that ¢ € [rg,7x41] and

T € [Fkth, "k+h+1]. For each 0 < ¢t < 19 we take a partition of [0, ¢] in A+ 1 subintervals of lenght
h%rl and iterate the inequality 1' from

q — Tk41 = Tk42-w-- — Tk4+h — T,

h + 1 times, to obtain

t  _Nj_1 1

Jupllr) < M) 2 o u

t _E[;_#]

r < — ) 2
ol k+h(RN) = M(h+ 1)

)PHL’“k+h(RN)

h—1)t
Hu(ﬁ)PHL’Hh—l (RN)

I

h+1

2t U R
m)PHL%H(RN) < M(;—) et TR lu(

t t - YE-]
||U(m)P||LTk+1(RN) <M(;—) ¢ TR ||U(0)PHLQ(1RN)-

Multiplying term to term, we get

t
[Ju( ht 1)P”L%+1(RN)

t

ol prarary < MPHL(——) 2 5= 0 (0) ] oo
PllLr(RN) h+ 1 PllLa(RN)

As h+1 < K 4+ 1, we obtain

=Nf1_1
lu(®)pllir@n) < Lt T u(O)p] oy, 0 <t < 70

N
2

where L = ME+1(K 4+ 1)2, which depends only on N and IVl Lz @y

Now we want to characterize when the Schrédinger semigroup decays exponentially. In other
words, we would like to characterize the best constant in the estimates in Theorem |3.5( when

r=q.

Let —A be the infinitesimal generator of a C¥ semigroup, S(t) = e~

, in a Banach space X.

Definition 3.6. The ezponential type of the semigroup e~ 4t is

oo :=inf{oc € R: He_AtHL(X,X)e_Ut is bounded int € (0,00)}
or equivalently

oo =inf{A € R: Hef(AJrM)tHc(xx) decays exponentially}.
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Now we will study the exponential type of Schrédinger operators of the form A = —A +
m(z)I, m € LEF(RY), o > & in the weighted spaces L}(RY). For this we first state some
properties of these operators in spaces without weight.

First, observe that considering the operator A in the unweighted space Lq(RN ), the expo-
nential type is independent of ¢ and coincides with the one in L?(R"), which is given by

Jon [Vo(@)? do + [px m(z)*(z) do
) S lo(2)]? d '

For more details see [27]. As mentoned in the introduction, note that —A + m(x)I is not
selfadjoint in LZ(IRN), see [14 [15].
Now we state a Lemma that will be very important below; for more details see [7]

~So(-A+ml) = _inf (3.22)

Lemma 3.7. Assume V € L7(2) for some o > % and it is such that the semigroup Sy (t)
decays exponentially with a decay rate p < 0, with

— < —So(—A +ml). (3.23)

Then
(1) There exists 69 > 0 such that for every A € (0,1 4 dy) the semigroup Sxy(t) decays
exponentially with a decay rate u(\) < 0, which is continuous in .

() There exists C(p) such that if P € L7, (Q), with p > %, with negative part such that

HP_HLPU(Q) < C(w), then the semigroup Sy4p(t) also decays exponentially.
Now we give a useful consequence of the previous lemma.

Lemma 3.8. Let m € LG (RY), 0 > &, 0 > 2. Then So(—A + Aml) is a continuous functions
of \.

Proof. Let \p € R and A = —A + A\om(x)I. If o is such that Hef“\l# < K, for every
0 <t < 00, then we have that ||e_(A+UI+€[)t||£(L27L2) decays exponentially for every ¢ > 0.

Consider the potential V(z) = Agm(x) + o + €, by Lemma there exists dp such that
Yo(—A 4+ V1) is continuous for p € (0,1 + dyg). Moreover, we have

“So(=A+pVI) = So(—A+ phom) + (o + )

Thus, we have that Yg(—A + AmI) with A = p)g is also a continuous function in a neigh-
borhood of Ay

Observe that considering the operator A in the spaces L{;(RY), it was proved in [6] that the
exponential type is independent of ¢ and coincides with the one in LT(]RN ). That is, it is given

by o0(L2), in (3:22).
Now in the space LZ(IRN ) we do not know if such property is true in general, although we
prove the following

Proposition 3.9. Assumem € LE(RY), 0> 5, 0>q>1and p € R, ,.
i) For sufficiently small ¢ we have

oo(—A +ml, LI (RY)) = So(—A + ml)
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where p:(x) = p(ex).
i1) If for every small e > 0

lim plex) =C:>0
|z|—c0 p(T)
then

oo(—A +mlI, LIRY)) = So(—A + ml)

Proof. Denote A = —A 4+ m(z)I. Given § € R, consider the isomorphism in Proposition
Then we have

Ny Atdl N
LERY) —— LE(R™)

th TJql

L(6
@Yy 0 pamyy

with .
2 1A 1+ 2
L@%:—A+72EV+P—£—( ) Vo)

qp qp q p?

as in l} and we have ||€_(A+6I)t||L(LZ(RN)) = He_Lt”L(Lq(RN)).
The construction above for the weight p.(x) gives

I +m(x)l + 01

2 1A 1+, 2
L) = A+ 2Py L pe | q”v@
q pPe q pe q Pz

|I+ 61

Vpe Ape  (49) |vp?
Thus, we define V! (z) = %p—’: and V2(x) = ép—i — Tq%.
|V2(z)] < Cie and |V2(x)| < Coe?.
Denoting L := A + V1 (2)V + 61, we can express L as

By Lemma [2.3] we have

L(0) = Ly + V2(2)I
and the perturbation I : — efined by Iz(u) = T )u, satisties
d th bation P : LI(RN LI(RM) defined by P, VE2 isfi
| Petl| parvy < C2|lull pagmay-

By Lemma below, e~ 19t and e~L1t have the same exponential decay in LI(RY) for e
small enough.

Again we have L1 = A+ V2 (2)V + 61 and now the perturbation Q. : H»(RY) — L4(RY)
defined by Q.(u) = V2 (z)Vu, satisfies

[Qcull arry < Coellull grarny-

Again by Lemma e~L1t and e~ (A9t have the same exponential decay in LI(RN) for e
small enough. This gives part i).

Part ii) follows from the above and Remark 0

Now we prove the lemma used above.
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Lemma 3.10. Assume A is a sectorial operator in a Banach space X with fractional power
spaces X*. Assume fore >0, P.: X* — X, with a € [0,1), is a linear perturbation such that

1Pl £ (xe,x) < €C.

Then if € is small enough, the semigroup generated by —A, that is, e=t, decays exponentially
in X if and only if the semigroup e~ APt decays exponentially in X .

Proof. Consider u(t) := e~(A+F=)ly4 the solution of

ug + Au = — Pz (u)
{ u(0) =ug € X.

Using the variation of constants formula, we have for ¢ > 0

t
u(t,ug) = e g —/ e~ A=) P.(u(s)) ds
0

Taking the norm of X¢, using the smoothing of the semigroup and the assumption on the
perturbation, we get that for some A\ > 0

—At

ta

5)

t o= A(t—
) e < Sl +2CM [ T u(s) o ds.

From this, for ¢t > 0
t
1M fu(t) | xo < Mlluollx + €CMt°‘/ (t —5)""s s |lu(s) || xe] ds.
0
Denoting K () := sup,cp 52e**||u(s)||xa, then for any fixed T'> 0 and for all 0 < ¢ < T,

t
%M |[u(t) | xo < Mluo||x +eCME(T)t® / (t— )"~ ds. (3.24)
0

Changing variables as s := ty

t 1
/ (t _ S)fasfa ds = tlZa/ (1 _y)fayfa dy — ,875172&

0 0

we get in (3.24))
teN u(t)llxe < Muollx +eCMt ™K (T)5.
Now taking the sup in ¢ € (0,7
K(T) < M|lug|| + eCMT K (T)B.
et Cp := , 1L eCpd ™% < 1 then < — = ||®o||- In particular, for ¢t € (0,77,

Let Co := OMB, if eCoT'~* < 1 then K(T) < 1—dvr I icular, f 0,7

tae/\tHu(t)Hxa < _ Mluo|l

> 1Tec,ri—=" Hence

MC e T |
1—eCoTl—o To

lu(T)][x < Cllu(T)][x < |uollx-
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Let T be such that g := M(:i,f;AT < i. Taking &g, such that egCoT'~ < %, then for every e,

with € € (0,g9) we get ||u(T)|x < 2apl||uo||x, for every ug € X, which implies

—(A+P.

1
lle )TH < 2ap < 5 for every e € (0, £0).

A+P5)t

Iterating the semigroup we get that [|e~( || — 0 exponentially.

The converse is now immediate.

Another property that will be needed below is the following consequence of the Lumer—
Phillips Theorem, see [23], which holds in Hilbert spaces.

Lemma 3.11. Assume —A is the generator of a Cy semigroup in a real Hilbert space H with
scalar product <,>. Then they are equivalent

(i) < Au,u >> —plul?, for every u € D(A), u € R.

(@) lle= Nl ey < e

Proof. (i) holds iff A+ pul is dissipative, which by the Lummer Phillips Theorem, holds iff
—A — uI generates a contraction semigroup, |le~(A+#D?| < 1, which is equivalent to (i4).q

Remark 3.12. (i) In the conditions of the Lemma, if we take an equivalent norm in H, then
e < Ment.

(1) Hence, if we define

. < Au,u >
= inf —/—5—

ueD(4)  |ul

Then for all o such that —o < —pu, we have < Au,u >> —olul|?> and from here we obtain
lle=4| < €. Then by definition of exponential type we get o > og, that is

p = 0p.
For the operator A = —A +m(z)I, m € LG(RY), o> %, 0 >2in L%(]RN), we have the
following

Proposition 3.13. Consider the operator A = —A +m(z)I, m € LG(RY), o > %, o>21in
L%(IRN), for an arbitrary weight p € R, ,,. Then
(1) for every 0 < 6 < 1, there exists a constant Cs > 0 such that

Jow IVulPp+ [rn 125 ul?p < Au,u >p2Ray

(1-9) inf 5 —Cs < inf 5
u€HY(RN) [l vy weHSRY)  [ulfs gy
Yul?p + m 12
<(1+6) inf Sy [Vl p2 Joy 551 Py o
ueH (RN) ’U‘L%(RN)
(3.25)
and
\V4 2 2
—(1=0)So(—A + m )—Cys < inf f]RN [Vulp + fRJQ\f m(x)|ulp
1-4 ueHL(RN) Jrw [ul?p
m
<—(1486)Sg(-A + ——
< —(140)Xo(—A + 1+5)+05
(3.26)
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and Cs — oo as 6 — 0.
(2) Considering the weight p-(x) = p(ex),

Vul? 2 A
ueH}_(RN) f]RN ’U‘ Pe ueD(A) \u| .

e—0

Proof. To prove (3.25)), observe that
< (—Au+m(x)u, u > 2 @yy= / u VuVp —i—/ \Vul?p +/ m(z)|ul?p. (3.27)
P RN RN RN

By Young’s inequality, for every § > 0 there exists Cs with C5 — 0 as § — 0, such that

‘/ uVqul <(5/ |Vul p—i—Cg/ lu|?p (3.28)
RN

and substituting (3.28]) in (3.27) and dividing by |u’L2(RN) we get
i VPt o B
(1-19) 5 —C5 < —5— <
|u’L%(RN) ’u‘L%(RN)
|:fRN |VU‘2P+ fRN T¥+5 ‘UP :|
(1+490) + Cs.

’u‘%g(RN)

Taking the inf H;(IRN) we get l)
Now we prove 1} We take v = u,o% and we have that Vu = %lvp%?) Vp+ p%l Vv. Hence

[ vulor [ m@lafo= [ woP+ [ minpf
IRN ]RN ]RN ]RN

1 Vp|? \%

+/ —]v|2‘ Z‘ /vva

r~ 4 P RN p

(3.29)
Now Cauchy-Schwartz’s and Young’s inequalities give, for every § > 0
2/ vVva' < 2/ v|Vo|Cy §5/ \Vv|2—|—C'5/ |v|? (3.30)
RN P RN RN RN
and
1
/ W Y2 R da| < CO/ (o2 da. (3.31)
4 RN P 4 RN
Replacing (3.30)), (3.31)) in (3.29))
Vol? + LICINPP: 1 V2 2
(1— ) [fIRN| | f]RN 1—5 |v] F(CEC - Cy) < f]RN| ul p+f]RN m(z)lul*p
|U L2 ]RN) 4 |U|L2 IRN)
Voul|* + v|?
< (14 g dne (VP Jn BROP | Co
‘U L2(RN) 4
(3.32)
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Taking the inf and considering that the set of u € H ; (RY) is equivalent to the set of v € H'(RY),

1
where v = up?, we have

_ \V4 2 2
CA-am-At ) b (e s e Vet Jaem@l
1-¢ 4 ueH (RN) |U|L2p(]RN)

< _a+am<A+l+Q+&%+@> (3.33)

which proves ((3.26]).
1

Now we prove part (2). Again setting v = up2 we get (3.29) with weight p.. Now, instead

of (3.30)), by Lemma we get
<5/ || Vol gs/ e d:c+5/ Vo|?
RN RN

‘ / v Vv
RN Pe
and instead of ([3.31])
‘ / vpz—: < 62/ |U|2.
RN
Thus, instead of (3.32)) we get
m(x g2
a-o| [ ol [ POp) -G s [ Vot [ @l
RN RN 1—¢ 4 RN RN

§(1+€)[/]RN\V11]2+/ T—(i-)‘ !2} (42—1—8).

Taking the inf, as in the first part of the Theorem, instead of (3.33) we end up with

. 2 [ V02 + [ 22 of?]
— (1= &)S(—A N+ (-7 —e)<(1-¢) inf )
A=oRo(-A+ D+ (-7 -9)<U-¢) inf Jean [0
2 f, N\Vu|2pg+f v m(z)|ul?pe ml e
e I R <—(146)%o(-A+ ——) + (= +
TS ey Jeo Toe B

(3.34)

and taking limits as ¢ — 0, using the continuity of the exponential type ¥o(—A + Aml) given
in Lemma 3.8 we obtain the first part of (2).
For the second part of (2) observe that

< Au,u >L2(]RN):/ ]Vu|2pg—|—/ m(:r)|u|2p€+/ uVuVpe.
P RN RN RN

By Lemma [2.3] and Cauchy Schwartz inequality, the right hand side above is bounded by

‘/ uVuVpe dx <€</ !u\zpe‘i‘/ |VU‘205>-
RN RN RN
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From this inequality we get

. [fn (V20 + frn T2 1u)? p.]
(1—¢) inf 5 —€
ueH}_(RN) fRN [ul? pe

< AU,U >L%(]RN)

< inf
T weHL®Y)  fp [ul?pe

Vul?p. + m(z) |, 12
S (1+€) lnf [fRN’ ’U,‘ Pe fIRQN Tte "LL’ pé]
we ) () T Tule
Using (3.34))
2
m €
—(1—¢)?(1—e)Zp(—A I 81— —
(1—€)"(1—e)%o( + (1_5)2)+( - —e)(l-e)—¢
Vul?p: + (@) 1,12
< (1-¢) inf URN| |*pe pr;N Tz |ul® pe] .
ueHp, (RY) S 1ul? pe
< A'LL,U >0 N
< inf sp(R )
f]RN |u| Pe
Vul?pe + 4 m@)),, 2
< (1+4¢) inf URN| ul”pe fRJ;’ T+e || pe]
we} (%) o 077

2

= (1 +e)20(-A+ )+ (=

TESE 1 +e)(1+¢)+e.

Taking limits as ¢ — 0 and considering the continuity of the exponential type of the operator
—A + Am(z) as in Lemma we get the result.
Now we give the following consequence of the previous results.

Corollary 3.14. Assume m € LG(RN), 0 > ¥ ando > 2, p € R . Then there exists
U 2 P1,P2

w=pu(m) € R depending only on pi, pa but independent of the particular weight p, such that
(1) [gn [VO(@)Pp(@) + [pv m(@)d(2)?p(x) = p [qv 6(2)?p(2),

(ii) A — u(Am) is continuous.

Proof. From 1' using Proposition taking § = %, we get that we can take pu(m) =
S 30(—A +2mlI) — C. This gives u(Am) = CSo(—A 4 2AmI) — C, but since —Xo(—A + Am)
is continuous in A, we get the result.g

4 Local and global existence and uniform bounds of solutions
for nonlinear problems.

Now we study the local and global existence and regularity of the following reaction diffusion
equation in the space X = L4(RY), with 1 < ¢ < o0,

— — i N
{ up — Au = f(x,u), withz € RVt >0 (4.1)

u(0) = u,

where p € R, p,-
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Theorem 4.1. Let 1 < g < co. Consider problem with ug € Hy'(RN), where p € Ry, 5,
We assume the nonlinear part can be written as

f(z,u) = g(x) + m(x)u + fo(z,u)

in such a way that g € LARN), m € L‘{](IRN) with o > %, o > q, and fo satisfies,

fol@,0) =0, G(z,0)=0 (42)
\%fo(aﬁ,s)] <C(1+ ]spQ( W, seR, € RY
. if N <gq
wzthlgr{ < NNq’ ifN > q. (4.3)

Then there exists a unique solution of (4.1 (-) given by the variations of constants formula,

u(t, ug) = S(t)uog + /0 S(t—s)(g+ f5(u(s))) ds, t €10,70) (4.4)

where S(t) denotes the linear analytic semigroup genated by A + m(z)I in LH(RY), that is
S(t) = eAtm@Dt - and [0,70) is the mazimal existence interval of the solution. Moreover the
solution satisfies, for every vy € [0,1)

u(.,up) € C([0, 79), H;’Q(RN)) N C((0, ), H§7q(]RN)) N C (0, 7), Hg“*’q(RN)).

Here ng(RN)7 with v € [0,1), denotes the fractional power spaces of the operator —A in
LI(RN).

Proof. We will use Theorem 3.3.3 in [20], page 54 in the base space X = Lj(RY) and with
X2 = HY(RY). Since g € LY(RY), it is enough to prove that f¢ : HyY(RY) — LYRY) is
Lipschitz on bounded sets.

First we are going to prove that the Nemitcky operator associated to fj transforms H RN
into LH(RY). Thus, if u € H, ’q(IRN ), using the weighted Sobolev embeddings in Lemma Ei

u € LP, (RN) and
pq

. < oo, if N <gq
/]RN u(z)[Pp(z) de < |[ullfagny wnthP{ <Hif1<g<N. (4.5)

Now, by we have,
/ | fo(@, u(x))|p(x) dz < C/ (14 [u(@)| "D p(x) ") u(z)|*p(x) do
RN RN
that is
/RN o, u(z)|p(x) do < c/ d:z:+0/ DT p(x) do. (46)

The first integral in the right hand side is finite since u € L}(R"), while the second one is also

finite by (4.5 and (4.3).
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Now we prove that the Nemitcky operator is Lipschitz on bounded sets. Let u, v € H ; ’q(RN )
with ||UHH;,q(RN), HUHH;’Q(RN) < R for some R > 0. Using again 1 ,
r—1 _ r—1
| fo(z, u(x)) — folz,v(x))] < CA+ |u(@)] o) @ + o) px) © )v(x) — u(=)]

and then

If6(u) = Fo (v )HL" ®y) S 1 /}RN lv(x) — u(x)|?p(x) de+
+C /RN P(x)r71(|U(w)|q(r—1) + ”U(:c)‘Q(rfl)”U(x) — u(2)|%p(z) da.

In the second integral we use Holder’s inequality, with 1 < s, s’ < oo such that % + 5 =1,

/RN p@) ! (Ju(@)| 1D + fo(@)| 1) u(@) — u(@)|"p(x) dz <

SCQ[/ p(:v)s(r_l)IU(fC)lqs(’"_”+/ p(fv)s(r_l)lv(ﬂf)!qs(“”} N =upa 1 o v
RN RN )

1
gs(r— 1) gs(r— 1) q

TouseWeneedngs(r—1)<%andq<qs < q 71f1<q<N Hence, if

1 <qg< N, we take s’ = Ni_q and then s = ? and ¢gs(r — 1) < TJL’ since r < +~—. On the
other hand, if N < ¢, we take s arbitrary. In such a case we get
1
e IR gs(r— qs(r—1) s I
HfO (u) ( HL‘Z (RN) < C3HU UH 1 (RN + 03 I:HUH l,q RN + ” H 1 (RN HU UHH;,q(RN)'
. 1, .
Since, u,v € Hy!(RY), with HUHH;"I(RN)’ HUHH;"’(RN) < R, we get

1fo(w) = fo ()l gy < Ca(R)|lv = ull y1.agny o

Remark 4.2. In the present work we are not focussing on the issue of critical exponents and
optimal growth condition on the nonlinearities to obtain a local well posed problem and actually,
the exponents from are not optimal. As a matter of fact, using the arguments developed
in [4] and further extended in [J], an existence and uniqueness theorem can be obtaind when the
nonlinearity fo satisfies where 1 <r < oo if N<qgandl <r < %—J_“g if N >q.

Now we will show some dissipativity conditions that guarantee the global existence of solu-

tions of (4.1)).

Theorem 4.3. Assume 1 < g < co. Under the assumptions of Theorem[{.1], assume that there
exists C € LG(RYN) with o > %, o >q, and 0 < D € L}(RYN) such that the nonlinear term
satisfies

f(x,s)s < C(z)|s|? + D(z)|s|, forall seR, zeRN. (4.7)
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Then the solution of with tnitial condition ug € H;’q(]RN) 1s globally defined.
Thus, defines a nonlinear semigroup {T'(t)}+>0,

T(t): HY(RY) — H(RY) (4.8)
as T(t)ug := u(t), where u(t) is the solution of with data ug.

Proof. By Theoremwe have that A+C(z)I generates an order preserving analytic semigroup
in X = L}(RY), that we denote Sc(t), which has the same fractional power spaces than —A.
As D € LL(RY), the linear problem

{Ut—AU:C(x)U—FD(az), r€RN, t>0 (4.9)

U(0) = |uo| € H(RY)

is well defined and has a unique solution, U (¢, |ug|), which is given by the variations of constants
formula

U(t, |ug|) = Sc(t)|uo| + /Ot Sc(t — $)D(z)ds (4.10)

and satisfies U (-, |ug|) € C(]0, oo),H,}’q(IRN)) N C((O,oo),Hg’q(IRN)), U(t,x) > 0 for every x €
RY and t > 0, since D > 0.

By comparison, we have
|u(t, uo)| < U(t, |uol) (4.11)

for all t > 0.
Now using the weighted Sobolev inclusions in Lemma [2.12] we obtain that for

< < oo, if N<gq
=P < if1<q<N

we have
lu(s)llze, gy < WU, @y < CHU ()] iy
pd pd
and from (|4.10))
t
Ut JuoD | gragey < ISc®luolll gragny + | 1Sc(t = 5)D@) g1 gg ds.
p 1 (RY) PIRY) L o (RY)
ut t eu(t_s) d

< Me ||UOHH;’Q(]RN) + MHDHLZ(IRN)/O (t— S)% s

for some p € R. Therefore, for all T > 0, if ¢ € [0, T,
10G FuoD oy < K@) (ol ey + 120 ) (4.12)

for some K(T') > 0.
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Using now the variations of constants formula we get estimates of u(t,ug) in Hy?(RY). In
fact, using (4.4)), we get, for some @ € R

t
lutt wo) | oy < €@HmOD ]| g + /O eA+mEDE) (g 4 £ (w(5)))]| g1y ds

—s)
tllg + 5 (uls)ll g ma) ds-
_ 8)2

t
< MeatHuOHH;'q(IRN)—i—M/o (

Thus,

eoe(t s)
u < Me®||u + M su + / ds
[ ()Hqu(RN) I 0”H1‘1(]RN) SG[OPT]HQ Jo ()l Lamm) ; (t—s)%

and then

st g1y < KT (ol gy + sup_llg + F§(u(s)) g (4.13)

s€[0,T]

Using now (4.6))

IN

lg + £5 ()| 7q g Cllglzgmm) + CUlu() gy + Nl gy,

< Clglliggny + CUU I + U (s)]

A

(4.14)

Hy (RN qu(IRN))

Hence, by , we obtain that for s € [0, 7], with T' < oo
lg + F5(u(sDl gy < OCT, ol gy 19l gy, 1D gy
Plugging this into we obtain that for all 0 <t < T < oo we have
)l gpaqgy < CCT. ol gy gy 1 Dllgcemy): (4.15)
Hence the solution is global in Hp¢(RN) .

Now we show how an additional dissipativity condition allows us to obtain uniform bounds
on the solutions, independent of the initial data.

Theorem 4.4. Let 1 < g < oo. Assume the nonlinear term in satisfies conditions ,
with 0 < D € LLIRN), C € L‘&(IRN), o> %, o > q and that the analytic semigroup
z'n2LZ(IRN) generated by A + C(x)I, with domain Hg’q(RN) decays exponentially. Let 0 < ¢ €
Hy(RN) be the unique solution of the elliptic problem

— A¢p=C(z)¢p+ D(x), z € RN, (4.16)

Then the solution of satisfies for ¢ < p < 00

hltnsup [u(t, wo)ll e, vy < Cll ]l 2.0 (g (4.17)
and, if ¢ > %,
tmsup u(t,10) | (%) < O] z0) (4.18)
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and both limits are uniform for ug in bounded sets of H;’q(]RN). Moreover for each 0 < a < 1

limsup [[u(t, o) | yzeaggy < Calldlgaggs: lgllzsgrm) (4.19)

t—o00

and the limit is uniform for ug in bounded sets of H;’q(IRN).
Moreover, if |ug(z)| < ¢(z) for all x € RN then

lu(t, z,up)| < ¢(x), forall z e RN, t>0.
Finally, if ¢ > % then, uniformly for uy in bounded sets of H;’q(IRN), we have

lim sup |u(t, z, up)| < ¢(x) (4.20)

t—oo

where the limit is uniform on compact sets of RN if inf g~ p(x) = 0, or uniformly in RY if
inf cgn p(x) > 0.

Proof. Observe first that 0 < ¢ € H, 3’q (RY) is well defined. Now we decompose the solution U
of (4.9) as U = v 4 ¢, where ¢ is the solution of (4.16) and v satisfies the linear homogeneous

equation

U(O) = |u0‘ - ¢7

that is, v(t) = eATC@DY (|| — $), and satisfies for every 0 < a < 1

{ v+ (—A=C(z))v=0

Me—at
()l gzea vy < —a—lluoll gy + 191l g @) (4.21)
for some a > 0. Therefore,
10 @)l gzmn vy < 0O gz gy + 16 2oy (4.22)

Taking the limsup we get, for each 0 < a <1

lim sup ||U(¢)

t—o00

(4.23)

HHga’q(]RN) S H(bHHga‘q(]RN)’

and the limit is uniform for ug in bounded sets of H, ;’q(IRN )-

Using this estimate and (4.11)) and the Sobolev embeddings in Lemma we obtain (4.17))
and (L15).

Moreover, if |ug(z)] < é(x) for all z € RN, then v(t,r) < 0 in RN and |u(t,z,up)| <
Ul(t,z, lug|) < ¢(z) in RV,

Also, if g > %, taking 2a0 > % in (4.21f), we get that v(¢) tends to zero in L:oé (RY). This
implies the convergence to zero on compact sets in RY if inf,cgn p(x) = 0, or uniform in RV if
inf gy p(x) > 0. From this and (4.11)), we get (4.20)).

Finally, if B C H;’q(]RN) is a bounded set of intial data, with o = % in 1’ we get in
particular

tim sup [Ju(t, uo)l| 7, vy < CUIA o)) (4.24)

0d
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< oo, if N <
forqu{ <?N lif1_<€j]<N , and from this, by (4.14) and (4.23
[— _q? f—

timsup g + £5 () g0) < OOl sy lolgnn)- (4.25)

On the other hand, taking A\ large enough such that the linear semigroup generated by
A +m(z)I — M\ decays exponentially in L3(R"), we consider, instead of (4.1)),

up — Au —m(z)u + Au = g(z) + Au + fo(x,u).

Using the corresponding variation of constants formula, we have

t+1
u(t + 1,ug) = Sx(Du(t) + Sx(t+1—39)(g+ Au(s) + f§(u(s))) ds (4.26)
t
where S)(t) denotes the linear semigroup generated by A + m(z)I — AI.
Taking the norm in Hga’q(RN) in (4.26)), we get that for 0 < a < 1 and some b > 0
—b(t+1-s)

t+1
_ e .
lu(t + 1, u0) | 200y < € ") £s roy +/t Gri—se lg + Au(s) + fo(u(s))llgmny ds
(4.27)

Let C’(qu)HH;,q(RN), 19/l (ma)) the largest of the constants in (4.24) and 1) then, tak-
ing for example C’(||¢||H1,q(]RN), lgllgmay) + 1, and given a set of initial data B, bounded in
P

H;’q(RN), by (4.24) and (4.25) there exists 7' = T'(B) > 0 such that

et w0) v, vy < CIDprraeny 9l ggamy) + 1.
pd
lg -+ () ()l gy < CUBN oy ol +1

for all t > T'(B).
Substituting this estimate in (4.27)) we get that, for all t > T'(B)

lutt + 1) | oy < € [CUIN ooy Nl + 1]

t+1 p—b(t+1-s)
C 1 —— ds.
+ [0y lollgee) +1 [ s ds
Since fttH ﬁ ds = fol e(_lb_(il;;) ds = L, we conclude that for each 0 < o < 1 and for all
t>T(B)+1

Jat, w0)l| ey < G190l g gy Igll s (4.28)
Hence, for each 0 < o < 1 we get (4.19)).
Note that inequality (4.28]) implies that the ball

By = {u€ H2(RY) : [lul yaos gy < Collldl gy 9l pagam)}

is an absorbing ball in H;*%(RN) for 1 < a < 1, for the nonlinear semigroup {T'(t)};>0,
although it is not positively invariant. The next result allows us to find a bounded, absorbing

and positively invariant set.
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Lemma 4.5. There exists a bounded set By o in H2*(RN) positively invariant, that is, T(t) B C
By, t > 0 and absorbing, that is, for each bounded set B in H;’q(]RN) there exists to(B) > 0
such that T'(t)B C By, for allt > to(B).

Proof. We define
BO,a = Uton(t)Boﬂ

which is positively invariant for {T'(¢) };>0. In fact, if z € Bg’a then there exists 79 > 0 such that
z € T(19)Bo,o and then z = T'(19)by, with by € By . Hence, we have T'(t)z = T'(t)T(10)byp =
T(t+ 710)bo € Uton(t)Boa = Bo,a, for all t > 0.

Thus, BO,a satisfies the statement.p

5 Asymptotic compactness and the global attractor

In this section we prove that the nonlinear semigroup {7'(t) }+>0 obtained above is compact when
t goes to infinity, that is, we prove the asymptotic compactness, see [19].

Definition 5.1. A semigroup {T'(t)}+>0 in a Banach space X is said asymptotically compact in
a Banach space Y if and only if for any sequence of initial data, bounded in X, {ug}, and for
any sequence t, — +oo then {T(ty)uf}n>1 has a converging subsequence in'Y .

We first show the asymptotic compactness of {T(t) };>0 in Lj(RY). Then we will use the vari-
ations of constants formula to conclude that {T(¢) }+>¢ is asymptotically compact in H 30"q(IRN )s
forany 0 < a < 1.

Theorem 5.2. Under the assumptions in Theorem the nonlinear semigroup {T'(t)}¢>0 in
HyY(RN) defined by is asymptotically compact in LE(RYN).

Proof. Take {uj} a bounded set of initial conditions in H, ,}’q (RY) and t,, — co. We show now
that for each € > 0 there exists k = ko(e) > 0, ng(e) such that for all k& > kg, n > ng(e)

/|>k |u(tn, ug)|%p(x) dz < ¢, (5.1)

that is, the solutions of (4.1)) are asymptotically, uniformly small in the sense of Lj(RY).

In fact, for € > 0 fixed, using that from (4.21)), v(¢t,z) = v(t, z,|ug| — ¢), converges exponen-
tially to zero in L}(RY) as t — +o0, and the convergence is uniform for uyp € B, where B is
a bounded set in H,}’q(IRN), we obtain that there exists to(e, B) such that for all ¢ > ty(¢) and
ug € B

I (% gy < & (5.2)

From the integrability of ¢ € L(R"), see Theorem there exists ko(e) such that for all
k> ko(e)

LL»JM@QM@sza (5.3)
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Using (5.2), (5.3), (4.11)) and (4.22)) with o = 0, we get that for all ¢t > ¢ty = to(e, B), and all
k> ko = ko(e),

/W utt, w)o(o) d < € /x|>k [0(8)|p(e) d + /W oalp(e) de
< c( | o) do+ /M 6(2)] () dx) < 2C (5.4)

and we get (5.1]).

Denote, for k > 0, Qi = B(0, k). Then we now show that {u(t,, u(})mk }n>1 is a precompact
set in L2(Qy). In fact, {u(tn,ug)mk} is bounded in H9(£);,) and by the compactness of the
inclusion H(€,) — L9(Q4) we conclude that {u(t, ug)mk} is precompact.

To end the proof, we show that for every e > 0 there exists a finite covering in Lj(RYN) of
the set {u(ty, uy)}n>1 by balls of radius not larger than CE% for some positive constant C.

For this, let ¢ > 0, k(¢) and n > ng(e) be as in . Since {u(ty, uo) } is precompact in
L(Qy(.)), we have that {u(tn,uo) }n>1 C U™, B(wj, i), where w; € Lq(Qk(s)) and g; < e

Define w; as the extension by 0 of w; to RN, that is,

<oy owiz), ifr e Qe
wz(:c) B { O, if, X Qé Qk(g).

1
We now show that {u(t,ug)}tn>n, C U, B(w;, Cea), for some constants C. In fact, if z €
{u(tn, ug)n>n, then there exists j with 1 < j < m, such that ||z — wj|L4(q,.,) < &;- Hence,

2 = 03 vy < 120y gy ) + CONz = Bl ) <+ Clo)el = Ceg

Now we use the variations of constants formula and the regularity of the semigroup to improve
Theorem m proving the asymptotic compactness in the spaces Hga’q(]RN ), with % <a<l.
Before, we state a previous result.

Lemma 5.3. The nonlinear semigroup {T'(t)}i>0 in H, ’q(IRN) defined by satisfies that
for any bounded set B in qu(]RN) for allT >0 and any 0 <t <T < o0, 1 <a< 1,

L(T, B)
to

T (t)u — T(t)v||Hga,q(RN) < lu—=vlLymny for w,veB.

Proof. Fix % < a < 1. By the variations of constants formula

t

T(tyu = eAHmhy + / AAm@DE=) (f6(T(s)u) + g) ds.
0

Then, if u,v € B is bounded in Hy(RN), t > 0,

t
T(t)u — Tty = SO0y — o) +/0 AU f8(T (s)u) — f5(T(s)v)] ds.
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Taking the norm in H;*%(RN) and using the smoothing of the linear semigroup, we get

e#(tfs)

et ! e e
IT()u = T@)oll p2eamry < S llu = vligm + /O Wllfo (T'(s)u) = fo(T(s)v)ll Ly mny ds

e/‘t elu‘(t_s)
T (s)u — T(s)vHHga,q(RN) ds

¢
< tTc”“ — V|l ga@ny + CO(B7T)/0 =90
for some p € R, for all T > 0,if 0 <t < T < o0.

Note that we have used in the last inequality that f¢ : Hy9(RN) — LY(RN) is Lipschitz on
bounded sets, see Theorem H, that o > %, B is bounded in H, pl’q(IRN ), and the estimates in
H, Fl,’q(lRN ) for the solutions on bounded time intervals, see .

With all these, for u, v € B, B bounded in H;’Q(RN),

Ch to1
17ty = Tl 2o gy < 7o lu = vl gy + Co /0 a7 = T(s)lzeay ds

— S

for 0 <t < T, where C; = C1(T), Co = C2(T, B).
Using the singular Gronwall lemma, see [28] page 88, there exists L(T', B) such that

L(T, B
70~ Tl ey < 0

||U - Q]HL%(]RN)a in (07 T]D

We then have

Theorem 5.4. Assume the hypotheses in Theorem[4.4 The nonlinear semigroup {T(t)}1>0 in
H,%’q(IRN) defined by is asymptotically compact in H,ga’q(]RN), for any 0 < a < 1.

Proof. Let {uZ} be a bounded sequence of initial data in Hy?(RN) and t,, — +oco. Let 7% > 0
be fixed. Since {u?} is bounded in Hy*(RN) and t, — 7* — 4oo then by the asymptotic
compactness in Lj(RY) there exists a subsequence of {u(t, — 7*,u?)}n>1, that we denote the
same, which is of Cauchy type in LL(RY). Denote w := u(t, —7*,ud). By the uniform bounds
in , we have that for sufficiently large n, {wj} is bounded in H;**(RY). Hence, we now
show that u(t,,u??) = T(7*)w? is of Cauchy type in H;*¢(RN). For this, taking v = w{} and
v = wy', the previous Lemma gives

* * L
) i W) gy = 177 Y = TG oy < gl = g
(5.5)

But as {w} }n>1 is of Cauchy type in LH(RY), from (5.5) we obtain that u(t,, u) = {T(7*)w }n>1
is of Cauchy type in Ho"(RN).q

From the previous results, the nonlinear semigroup {7'(t)}:>0 in H, pl’q(IRN ) has a bounded
absorbing set in Hy9(RN) and is asymptotically compact. Then from [19], the semigroup
{T'(t)}+>0 has a global attractor A in le’q(IE{N), which satisfies

(i) A is compact in Hy(RN)

(17) A is invariant, T'(t)A = A, Vt > 0.

(7i1) A attracts each bounded set of H ,}’q(IRN ). Additionally, it is maximal in the class of
bounded invariant sets in H, ;’q(IRN )

Now we give additional regularity properties of the attractor.
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Theorem 5.5. Consider A the global attractor of in H;’q(IRN). Then
(1) AcC Hga’q(RN), 0 <a <1 and is bounded.
(2) A attracts bounded sets of H;’q(]RN) in the norm of Hga’q(]RN)

Proof. (1) By (4.19)), for each 0 < v < 1

lim sup HU(t,uo)HHga,q(]RN) < Ca(HQSHH;v‘I(RN)a HQHLZ(]RN))

t—o0
uniformly for ug € B, a bounded set of Hy?(RY). Now take B = A and then there exists
T* = T*(A) such that for every t > T* we have ||T(t, uo)HHza,q(RN) < Cq + 1 with up € A.
P

Using the invariance of the attractor we get ||.A||H2a,q(]RN) < Cq+1. Thus, A C Hga’q(RN), for
P
each 0 < a < 1 and is bounded.
(2) We now that A4 attracts bounded sets of H,}’q(]RN) in the norm of H,}’q(]RN), that is, if B
is bounded in le’q(IRN) then distH;,q(RN)(T(t)B, A) — 0, as t — oo. That is for each {b,} C B
and {t,} — oo, there exists a sequence {a,} C A, such that, as n — oo,

| T (tn)br — CLTLHH;"?(]RN) — 0. (5.6)

Let us now show that if B is bounded in H;’q(IRN) then distHza,q(RN)(T(t)B,A) — 0 as
P

t — oo. We argue by contradiction. Assume there exists € > 0, a sequence {tp}n>1, tn — 00
such that for each {ap}n>1 C A and {b,}n>1 C B, we have

”T(tn>bn - anHHZa,q(RN) > €. (57)

Let € and {t,} as in (5.7)) and let t* be fixed. By (5.6|) applied to ¢,, — 7" — 400, there exists
{an}n>1 C A, and a sequence {b, },>1 C B such that

[Tt = t)bn = @nll g gny — 0.

Denoting, by, 1= T(t, —t")b, and ay = T(t")a, € A, by Lemma we have that there exists
L > 0 such that for every n € IN

1T (t0)bn = nll g2eagny = ITE)bn = T )anll 2o g

1 7 n—oo

< L(T) 75 1bn — anllpamyy — 0
(t*) g

which contradicts (5.7).

With these we can prove

Theorem 5.6. (i) The nonlinear semigroup {T(t)}i>0 constructed above is well defined in
HyY(RN) for i <a<1.

(13) There ezists a bounded absorbing set in Hga’q(RN).

(131) {T'(t)}+>0 is asymptotically compact in Hga’q(]RN).

Therefore, {T'(t)}+>0 has a global attractor in Hga’q(IRN), 3 < a < 1 which is independent
of a and coincides with the attractor in H;’q(]RN).
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Proof. Part (i) is immediate. Part (i7) is given by Lemma [4.5] For (iii) see Theorem [5.4] Last
part is obtained from [19], since the attractor in H;“?(RN) denoted A®, exists. Since A and
A® are bounded and invariant in H;*¢(RN) for o > % then, by the maximality of A% we get
A C A%. Analogously, A, A% are bounded and invariant in H ;’q(IRN ) and then the maximality
of Ain H;’q(RN) we get A* C A. Hence, A = A%

Finally, we now prove that the attractor constructed above has extremal equilibria, see
[25] 26, [13].

Theorem 5.7. Under the assumption of Theorem[{.4), there exist two extremal ordered equilibria
Om < oy Omsonr € HYYRYN), such that

o (2) < liminfu(t, 25 uo) < limsup u(t, 5 u0) < () (5.8)
—00

t—oo

for x € RN and uniformly on bounded sets of initial data in H,}’q(IRN). The attractor of
satisfies
A C [pm,om],  ©m,pm € A.
Moreover, oy is globally asymptotically stable form above in H;’Q(IRN) and pm, s so from below.
In particular, any equilibrium stays between the two extremal equilibria.
If we assume additionaly that q > %, then holds uniformly in compact sets of RN if
inf, g~ p(x) = 0, or uniformly in RY if inf, cpn p(x) > 0.

Proof. Observe that 0 < ¢ in (4.16)) is a supersolution for (4.1)) since

—A¢ =C(z)¢ + D(x) = f(z,9).

Hence, the solution of (4.1]) with initial data ¢ satisfies T'(t)¢ < ¢ and therefore it is decreasing
in time. As the semigroup is asymptotically compact, the w-limit set of this trajectory is a
unique equilibrium point, that is

Jim T(t)¢ =y in H)9(RY).

Let B € H ;’Q(RN ) a bounded set of intial data. Then for every ug € B we have (4.11)), that
is
u(t, uo)| < U(t, |uol)
and U(t) = ¢ + v(t), where v(t) — 0 in Hy(RN), as t — oo, uniformly in ug € B, see (4.21)).
In particular, for each ¢t > 0, u(t,z,up) < U(t,z, |up|) and using the nonlinear semigroup at
time s > 0 we have

u(t + s, x,ug) = T(s)u(t, z,up) < T(s)U(t,x, |ugl).

Passing to the limit as ¢ — oo and using the continuity of the nonlinear semigroup in H, ;’Q(RN )
we get
lim sup u(t, 7; 1) < T(3)(x)
t—o0
for x € RN. Taking now the limit s — co we get the last inequality in (5.8)), uniformly in
ug € B.

38



Arguing with —¢ and using u(t, z,ug) > U(t,x, —|ug|), we get the minimal equilibrium ,,
and we obtain (5.8]).
Finally, if ¢ > % observe that by Theorems and we can repeat the arguments above,

using now the convergence and the conibuity of the semigroup in H, Za’q(]RN ) with a < 1. Also,

by the Sobolev inclusions in Lemma [2.12|this convergence implies convergence in L% (RY). This
P q

convergence, in turn, implies uniform convergence in compact sets of R if inf gy p(x) =0,
or uniformly in R if inf,cgn p(z) > 0.g

Now we test our results with the important model example of logistic equations. In fact we
have,

Proposition 5.8. Suppose that

f(z,s) =m(z)s —n(x)|s|""ts, zeRY, seR,

where r > 1,

N
m € LE(RNY), o>

and there exists
0<po€ Ry p,

such that
0<n(z) <po(z) forxzeRN.

Moreover, assume

1<r

{<oo, ifN <o
N_ N
< 5 if5 <o <N.

Then for any q such that
N
qo(r) := max{—,1} < ¢ < o,
T
the problem is well posed in H,}’q(IRN) where

q

ple) = po(z) 7.

Proof. Note that with the notations in (4.2)), we have fo(x,s) = —n(z)|s|""'s and then
r—1

|fo(z,s)| < |s|"p(z) @« with p(x) = po(x)%. Note that by Lemma we have p € Rcc

for some constant C'. Also 1) is satisfied as soon as g > % Finally the other restrictions in

Theorem namely 1 < ¢ < o are satisfied due to the restrictions on  and o in the statement.

Concerning the global existence and the asymptotic behavior note that we just need to prove
that holds with 0 < D € LY(RY), C € Lg(RN), o> %, o > ¢ and such that the analytic
semigroup in LI(RY) generated by A + C(z)I, with domain H, g’q(]RN ) decays exponentially in
LY(RYN). Hence we have
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Proposition 5.9. With the notations in Proposition|5.8, consider

N
qo(r) :== max{p, 1} <qg<o,

and

Assume there exists a decomposition

m(z) =mi(x) + ma(z), me >0

such that my € LG(RY), o > N the analytic semigroup generated by A + my(z)I, decays
exponentially in Lj(RY).

2
Assume moreover th(lt
ma
nl/r

Then, Theorems[{.4), and [5.7 apply.

r N
e L7 (RM).

Proof. Note that, using Young’s inequality, we have

for

ma () )’”/‘S‘,

(as)s < mafa)s? + O (570

some constant C' > 0. Therefore (4.7)) is satisfied with C(z) = mq(z) and D(z) a multiple

of ( ma (2) )T . Thus, with ¢ and p(x) as in Proposition |5.8] we have that the conditions in the

nl/m(z)

statement guarantee that D € LY(RY).g
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