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3 Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM

1 Introduction

In this paper we study the asymptotic behavior of solutions of reaction diffusion equations of
the form {

ut −∆u = f(x, u), for x ∈ RN , t > 0
u(0) = u0

(1.1)

where the initial value and the solutions are in suitable weighted Sobolev spaces.
The fact that equation (1.1) is posed in the whole RN introduces some difficulties related

to the unbounded character of the domain. If for instance, we try to study this equation in
standard Lebesgue spaces Lp(RN ) we have to cope with the problem that Lp(RN ) spaces are
not nested. In particular, constant functions are not contained in Lp(RN ) for 1 ≤ p < ∞ and
therefore, if, for instance, the nonlinearity is of the form f(x, u) = f(u), the roots of f cannot
be considered as equilibria of the equation since they do not live in the space. Also, traveling
wave solutions connecting different roots of f(u) present the same difficulty. Note that working
in L∞(RN ) does not help, since for example, traveling waves do not connect different roots of
f(u) in such a norm.

Another difficulty is that the standard Sobolev embeddings are not compact. This lack of
compactness does not allow to deduce compactness properties of the semigroup, which is a clear
drawback for the proof of the existence of attractors.

∗Partially suported by Project MTM2006–08262, DGES, Spain, GR58/08, Grupo 920894 (BSCH-UCM, Spain).
Moreover, the first and third authors are also supported by PHB2006-003 PC from MICINN and the first author
is also supported by SIMUMAT, Comunidad de Madrid
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Hence, standard nonlinearities like f(u) = u − u3 which have extensevely studied and are
nowadays well understood if the domain were bounded, present serious difficulties when one is
faced with the problem of the asymptotic behavior of solutions in RN .

These facts indicate that we should look for other appropriate functional settings to study
equation (1.1). Nevertheless, even in the setting of standard Lebesgue spaces there are some
interesting studies of the dynamics of the equation above, see for instante [7] and references
therein. Note also that [7], [26] deal with the case of unweighted spaces, while [6, 8, 13] work in
the so called locally uniform spaces, which are intermediate between unweighted and weighted
spaces. A setting in BUC can be found n [21, 16].

Observe that the problem for f(u) = u−u3 can not be handled within the results in [7], [26]
nor [21, 16], although it is dissipative, in some sense, in locally uniform spaces, see [8, 13].

With regards to the use of weighted Sobolev spaces, one of the pioneer works is [11], where
they propose the analysis of a problem like (1.1) in weighted spaces. The nonlinearity they
consider is of the type f(x, u) = λ0u+f0(u)+g(x) where λ0 < 0 and f0 has some strong growth
conditions and several restrictive sign conditions. They analyze the equation in L2

ρ(R
N ) with

ρ(x) = (1 + |x|)γ . Where Lp
ρ(RN ) is is defined as the set of functions u ∈ L1

loc(R
N ) such that

uρ1/p ∈ Lp(RN ) if 1 ≤ p < ∞ and uρ ∈ L∞(RN ) if p = +∞. In particular, if γ < −N/2
the constant functions are in Lp

ρ(RN ) for all 1 ≤ p < ∞. They obtain attractors in some weak
topology in the case γ < 0, and in strong ones if γ > 0. Furhter developments of this theory
are obtained in [18, 30, 24]. We would also like to mention the works [1] and [17] where they
consider nonlinearities depending also on ∇u.

The accomplishments of the articles mentioned above are very valuable and worth to be
mentioned although from a detailed study of their results it seems clear that a satisfactory
linear and nonlinear theory for this type of equations in weighted Sobolev spaces neededs to
be completed. With respect to linear problems such a theory must include several important
aspects. One of them is a deep analysis of the regularization properties of the linear heat and
Schrodinger semigroups in the class of Sobolev weighted spaces, including Lp−Lq type estimates,
which are very well known for standard unweighted Lp spaces, see [27], and play a central role in
the analysis of nonlinear equations; see also Section B6 in [27] for some results in weighted spaces.
Other important aspect in the linear theory, related with the first one, is the analysis of the
generation of analytic semigroups and the characterization of their fractional power spaces, see
[20] for a general theory. These goals cannot be accomplished without analyzing in detail some
functional properties of Sobolev spaces with weights, like sobolev embeddings, density properties
and so forth. With respect to nonlinear problems, the theory should include a general theory of
local and global existence of solutions, a deep analysis of dissipative mechanisms conditions that
guarantee that solutions eventually enter in a bounded set of the space and, very important,
conditions that imply some compactness property of the semigroup that ultimately leads to the
existence of the global attractor.

As a matter of fact, having a close look at the papers mentioned above, see for instance
[11, 17], we may observe that to obtain local (and global) existence of solutions for the nonlinear
problems it is used in a strong way the particular structure of the nonlinearity. Actually, the
fact that f(x, u) = λ0u + f0(u) + g(x), with λ0 < 0 and f0(u)u ≤ 0, is used to obtain existence
of solutions for the nonlinear problems. Moreover, the proof supplied in this papers does not
apply for local existence of solutions for functions of the type f(x, u) = u|u|p−1 for any p > 1.
As a matter of fact local and global existence of solutions is obtained at once and the hypotheses
λ0 < 0 and f0(u)u ≤ 0 are used in a essential way. This is in sharp contrast with the standard
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theory of semilinear parabolic equations where only some growth condition of the nonlinearity
is needed to obtain a well posed problem locally in time, see [20]. An explanation about this
fact can be found in the paper [10] where it is shown that problem (1.1) with f(x, u) = u|u|p−1

is not even well posed locally in time for any p > 1 in any space Lq
ρ(RN ), q ≥ 1, for any weight

ρ satisfying ρ(x) → 0 as |x| → +∞. It is actually shown in [10] that there exist sequences
of smooth, compactly supported initial conditions un

0 ∈ Lq
ρ(RN ) with un

0 → 0 in Lq
ρ(RN ),

and the time of existence of the solution starting at un
0 approaches 0 as n → +∞. This fact

leaves little hope to obtain a general local existence result for nonlinearities f(x, u) satisfying
growth estimates of the type |∂f

∂u(x, u)| ≤ C(1 + |u|p−1) for some p > 1 which could obtained
via fixed point arguments in the variation of constants formula, see for instance [20]. Hence,
to show that problem (1.1) is well posed in spaces with weights for nonlinearities of the type
f(x, u) = λ0u + f0(u) + g(x) the function f0 must satisfy some strong sign conditions.

All this problematic suggest, as we do in this paper, to consider nonlinearities that depend
on the spatial variable x, that is, of the form f(x, u), and to determine a class of nonlinear
terms such that the problem is well posed in weighted spaces. Thus, as we will show, the spatial
behavior of the nonlinear term is somehow related to the behavior of the weight. Also, in this
direction, in this paper we give a suitable theory, as sketched above, in Lq

ρ(RN ) in the case
lim|x|→∞ ρ(x) = 0, and in also in the case lim|x|→∞ ρ(x) = ∞.

We describe now the contents of our paper.

In Section 2 we introduce a class of weights, that may go to zero or to infinity as |x| → +∞,
define the corresponding Sobolev spaces with these weights and analyze the most important
properties of these spaces. In particular, we see that if the weight considered decays to zero as
|x| → +∞, the Sobolev embeddings are of the type W s,p

ρ (RN ) ↪→ W r,q

ρq/p(RN ), with q/p > 1,

and no Sobolev embedding of the type W s,p
ρ (RN ) ↪→ W r,q

ρ (RN ) can be obtained. On the other
hand if rh weight goes to infinity as |x| → ∞ then Sobolev type embeddings, similar to the one
in unweighted spaces, hold.

In Section 3 we develop the linear theory for heat (ut − ∆u = 0) and Schrödinger (ut −
∆u + V (x)u = 0) linear equations in weighted Sobolev spaces. We show that they generate
analytic semigroups, establish concrete weighted Lp −Lq estimates for these two equations and
analyze the exponential type of the semigroups. Note here that differential operators like −∆
or −∆ + V (x) are not selfadjoint in L2

ρ(R
N ), see [14, 15].

In Section 4 we analyze the nonlinear evolutionary problem. We give appropriate growth
conditions on the nonlinearities guaranteeing a local existence theorem, see Theorem 4.1. Later
on, we impose some conditions on the nonlinearity (which are of the type f(x, u)u ≤ C(x)u2 +
D(x)|u| for some appropriate functions C(x), D(x)) that guarantee global existence of solutions,
see Theorem 4.3, and that the flow generated by the nonlinear equation is dissipative, that is,
that we have a bounded absorbing set.

In Section 5 we study the compactness properties of the nonlinear semigroups and show
that the system has a global attractor in weighted Sobolev spaces. We also analyze other
important properties of the asymptotic behavior of the flows, like the existence of the so-called
extremal equilibria (see [25, 26, 13]), that is, two equilibria ϕm ≤ ϕM of the equation with
the property that all the asymptotic dynamics of the system is contained in the “interval”
[ϕm, ϕM ] = {u(x) : ϕm(x) ≤ u(x) ≤ ϕM (x)}.
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2 Weighted spaces

A weight is a continuous and strictly positive function ρ : RN → (0,∞).
The following class of weights was used in [7].

Definition 2.1. We say that a weight function ρ : RN → (0, ∞) is in the class Rρ1,...,ρk
, with

k ∈ N and ρj > 0 if:
i) ρ ∈ Ck(RN )
ii) |Dαρ(x)| ≤ ρjρ(x), for x ∈ RN , |α| = j with 1 ≤ j ≤ k.

In particular, we say that ρ is in the class R∞ if the condition above is satisfied for every
k ∈ N.

Example 2.2.
i) The weight ρ(x) := (1 + |x|2)γ, x ∈ RN , γ ∈ R, belongs to the class Rρ1,ρ2 with ρ1 = 2|γ|,
ρ2 = 4|γ||γ − 1|+ 2|γ|.
ii) Assume ρ(x) is a C2(RN ) weight such that ρ(x) = eγ|x|, γ ∈ R for all |x| ≥ 1 then ρ(x) is in
the class Rρ1,ρ2, for some ρ1, ρ2 that depend continuously on γ.

Now we summarize some properties of this class of weights that will be used further below.

Lemma 2.3. Assume ρ is in the class Rρ1,ρ2. Then
(i) The weight ρε(x) := ρ(εx) is in the class Rερ1,ε2ρ2

.
(ii) We have ρ(x) ≤ ρ(x − y)e

√
Nρ1|y|, x, y ∈ RN . In particular ρ(x) ≤ eC|x|ρ(0), where

C =
√

Nρ1. That is, the weights of the class Rρ1,ρ2 have at most an exponential growth in
infinity and moreover

ρ(x)
ρ(y)

≤ e
√

Nρ1|x−y|.

(iii) If ρ(x) = (1 + |x|2)γ, with γ ∈ R, we have

ρ(x)
ρ(y)

≤ C(γ)(1 + |x− y|2)|γ|

and ρ ∈ L1(RN ) iff γ < −N
2 .

(iv) If ρ ∈ C2(RN ), is such that ρ(x) = eγ|x| for |x| ≥ 1, with γ ∈ R, then

ρ(x)
ρ(y)

≤ Ce|γ||x−y| for each x, y ∈ RN

and ρ ∈ L1(RN ) if γ < 0.

Proof. Parts (i) and (ii) are immediate.
(iii) This is equivalent to prove that ρ(x)ρ(z) ≤ Cρ(x + z), for each x, z ∈ RN , if γ < 0 and

ρ(x)ρ(z) ≥ Cρ(x + z), for each x, z ∈ RN , if γ > 0.
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From the Cauchy-Schwartz inequality

1 + |x + z|2 ≤ 2(1 + |x|2)(1 + |z|2).

From here, if γ < 0 we have [(1 + |x|2)(1 + |z|2)]γ ≤ (1
2)γ(1 + |x + z|2)γ and if γ > 0 then we

have (1 + |x + z|2)γ ≤ 2γ [(1 + |x|2)(1 + |z|2)]γ . In both cases we get the result. On the other
hand, the integrability condition is obvious.

(iv) For x ∈ B(0, 1) and some m0 = m0(γ) we have

ρ(x) ≤ max
z∈B(0,1)

ρ(z) := M0 ≤ m0 min
z∈B(0,1)

eγ|z| ≤ m0e
γ|x|. (2.2)

Also, for each y ∈ B(0, 1) and some m1 = m1(γ), we have

eγ|y| ≤ max
z∈B(0,1)

eγ|z| ≤ m1 min
z∈B(0,1)

ρ(z) ≤ m1ρ(y). (2.3)

From (2.2) and (2.3) we get

ρ(x)
ρ(y)

≤ m0m1e
γ|x|

eγ|y| = m0m1e
γ[|x|−|y|], for each x, y ∈ B(0, 1), with γ ∈ R. (2.4)

On the other hand, for |x| > 1, |y| > 1

ρ(x)
ρ(y)

=
eγ|x|

eγ|y| = eγ[|x|−|y|]. (2.5)

When |x| > 1 and y ∈ B(0, 1), we use (2.3) and the definition of ρ(x) to obtain

ρ(x)
ρ(y)

≤ eγ|x|m1

eγ|y| = m1e
γ[|x|−|y|]. (2.6)

Finally, if x ∈ B(0, 1) and |y| > 1, using (2.2) and the definition of ρ(x)

ρ(x)
ρ(y)

≤ eγ|x|m0

eγ|y| = m0e
γ[|x|−|y|]. (2.7)

From (2.4), (2.5), (2.6) and (2.7) we take C = max{m0m1, 1,m1,m0} to obtain,

ρ(x)
ρ(y)

≤ C(γ)eγ[|x|−|y|] ≤ C(γ)eγ|x−y|, for all x, y ∈ RN , with γ ∈ R.

Now we have the following lemma which will be useful in the next section.

Lemma 2.4. If ρ ∈ R = Rρ1,ρ2,...,ρn then

|Dαρw(x)| ≤ Cρw(x), for all |α| ≤ n, and w ∈ R.

where C = C(n, w, ρ1, ρ2, ...., ρn).
In particular, for every w ∈ R, ρw ∈ Rρ̂1,...,ρ̂n with ρ̂1 = . . . = ρ̂n = C, and if w ∈ (0, 1) then

ρ̂i can be taken independent of w.
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Proof. We proceed by induction in the order of α.
1) (a) We prove the result for |α| = 1. taking derivatives and using the assumptions we have

|∂iρ
w(x)| = |w|ρw−1(x)|∂iρ(x)| ≤ ρ1|w|ρw(x). (2.8)

(b) If |α| = 2.

|∂j∂iρ
w(x)| = | ∂j [wρw−1(x)∂iρ(x)] | = | w[ρw−1(x)∂j∂iρ(x) + ∂iρ(x)∂j

(
ρw−1(x)

)
] |

≤
(
|w|ρ2 + |w||w − 1|ρ2

1

)
ρw(x).

where we have used (2.8).
2) Assume the result for |α| ≤ n and for all w ∈ R. Then we show it holds for |α| = n + 1

and w ∈ R. From the case |α| = 1, using Leibniz’s rule, the induction assumption and ρ ∈ R =
Rρ1,ρ2,...,ρn+1 we have, for some α̂ with |α̂| = n− 1,

Dαρw(x) = (Dα̂∂i)ρw(x) = Dα̂[wρw−1(x)∂iρ(x)] ≤ |w
∑
β≤α̂

Cα̂,βDβ(ρw−1(x))Dα̂−β(∂iρ(x))|

≤
∑
β≤α̂

Ĉα̂,βρw−1(x)|Dα̂−β+1ρ(x)|.

Hence |Dαρw(x)| ≤
∑

β≤α̂ Ĉα̂,βρw−1(x)Cα̂−β+1ρ(x) = C1ρ
w(x).

Given a weight ρ(x), we define the weighted Sobolev spaces as follows, see also [6].

Definition 2.5.
i) For 1 ≤ p < ∞, we define

Lp
ρ(R

N ) := {u ∈ Lp
loc(R

N ) :
∫
RN

|u(x)|pρ(x) dx < ∞}, 1 ≤ p < ∞

with norm ‖u‖Lp
ρ(RN ) =

( ∫
RN

|u(x)|pρ(x) dx

) 1
p

.

ii) For p = ∞ we define

L∞ρ (RN ) := {u ∈ L∞loc(R
N ) : sup

x∈RN

|u(x)|ρ(x) < ∞}

with norm ‖u‖L∞ρ (RN ) := supx∈RN |u(x)|ρ(x).

In a similar way, we define the weighted Sobolev spaces W k,p
ρ (RN ).

Definition 2.6. For k ∈ N, 1 ≤ p ≤ ∞ we denote W k,p
loc (RN ) the space of φ ∈ Lp

loc(R
N ) with

distributional derivatives Dαφ ∈ Lp
loc(R

N ) for all |α| ≤ k.
We also define W k,p

ρ (RN ) as the Banach space of all φ ∈ W k,p
loc (RN ) such that the norm

‖φ‖
W k,p

ρ (RN )
:=

∑
|α|≤k

‖Dαφ‖Lp
ρ(RN ) < ∞.
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Remark 2.7.
i) If the weight satisfies 0 < m ≤ ρ(x) ≤ M , for x ∈ RN , then the spaces Lp

ρ(RN ) coincide
with the spaces Lp(RN ), with equivalent norms. In the same way the weighted Sobolev spaces
coincide with the standard Sobolev spaces W k,p(RN ).

Therefore, the natural case to consider are: a) weights that go to infinity at infinity and b)
weights that go to zero at infinity.
ii) Observe that if the weight verifies that for all small ε > 0,

lim
|x|→∞

ρ(εx)
ρ(x)

= Cε > 0

then the weights ρ(x) and ρε(x) = ρ(εx) define the same spaces, with equivalent norms.
This property is satisfied by the weights ρ(x) := (1 + |x|2)γ, γ ∈ R, but not the C2(RN )

weight such that ρ(x) = eγ|x|, for all |x| ≥ 1, γ ∈ R.

Now we present some relationships between weighted and unweighted Sobolev spaces.

Lemma 2.8. (i) If ρ ∈ L1(RN ) then L∞(RN ) ↪→ Lp
ρ(RN ), for each 1 ≤ p < ∞ and if p ≥ q

then Lp
ρ(RN ) ↪→ Lq

ρ(RN ).
(ii) In any case Lp(RN ) ∩ Lp

ρ(RN ) is dense in Lp
ρ(RN ), for 1 ≤ p < ∞.

Proof. (i) The first part is immediate. If p > q ≥ 1, then we have for a suitable 0 < α < 1, to
be chosen:∫

RN

|u(x)|qρ(x) dx ≤
[ ∫

RN

|u(x)|pρ(x)
αp
q dx

] q
p
[ ∫

RN

ρ(x)
(1−α)p

p−q dx

] p−q
p

Taking αp
q = 1 and from the integrability of ρ(x) we get that

‖u‖Lq
ρ(RN ) ≤ ‖u‖Lp

ρ(RN )(
∫
RN

ρ(x) dx)
1
q .

(ii) It is easy to see that given f ∈ Lp
ρ(RN ) the sequence {fn} ⊂ Lp(RN ) ∩ Lp

ρ(RN ),

fn(x) =
{

f(x), if x ∈ B(0, n)
0, if, x /∈ B(0, n).

satisfies fn → f in Lp
ρ(RN ).

Now we establish an isometric isomorphism between weighted and unweighted Sobolev spaces
which will be used to prove several properties of the former ones.

Proposition 2.9. Assume 1 ≤ p < ∞, k ∈ N ∪ {0} and ρ ∈ Rρ1,...,ρk
. The mapping

Jp : W k,p
ρ (RN ) → W k,p(RN ), Jp(u) := uρ1/p

is an isomorphism which is moreover an isometry if k = 0.
In case p = ∞, the mapping

J∞ : W k,∞
ρ (RN ) → W k,∞(RN ), J∞(u) := uρ

is an isomorphism which is moreover an isometry if k = 0.
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Proof. Let u ∈ W k,p
ρ (RN ) then we show that uρ

1
p ∈ W k,p(RN ). By Leibniz’s rule and Lemma

2.4 we have,

‖Jp(u)‖p
W k,p(RN )

: =
∑
|α|≤k

‖Dα(uρ
1
p )‖p

Lp(RN )

≤
∑
|α|≤k

∑
β≤α

∫
RN

Ĉα,β|Dβu(x)|p|Dα−βρ
1
p (x)|p dx

≤
∑
|β|≤k

Ĉβ

∫
RN

|Dβu(x)|pρ(x) dx.

From here we get ‖Jp(u)‖p
W k,p(RN )

≤ C1‖u‖p

W k,p
ρ (RN )

. Consequently, the mapping Jp is well

defined, one to one and continuous. By the open mapping theorem, the inverse is continuous.
Hence, it is an isomorphism, If k = 0 we have

‖u‖p
Lp

ρ(RN )
=

∫
RN

|u|pρ dx = ‖uρ
1
p ‖p

Lp(RN )
= ‖Jp(u)‖p

Lp(RN )

that is, Jp is an isometry.
The case p = ∞ is analogous.

The next definition holds for any interpolation method. For details see [6]. We will use below
the complex interpolation method, because in this case we can characterize the fractional power
spaces, as we will show below. See [29].

Definition 2.10. For 1 ≤ p ≤ ∞, k ∈ N ∪ {0} and s ∈ (k, k + 1) we define θ ∈ (0, 1) such that
s = (1− θ)k + θ(k + 1), that is θ = s− k. Then we define the intermediate spaces as

W s,p(RN ) := [W k+1,p(RN ),W k,p(RN )]θ,

and

W s,p
ρ (RN ) := [W k+1,p

ρ (RN ),W k,p
ρ (RN )]θ.

where [·, ·]θ is the complex interpolation funtor, see [2]

From Proposition 2.9 and the properties of interpolation we get then

Lemma 2.11. Let 1 ≤ p < ∞, k ∈ N, ρ ∈ Rρ1,ρ2,.....ρk
, and 0 ≤ s ≤ k then

Jp : W s,p
ρ (RN ) → W s,p(RN ), Jp(u) = uρ1/p

is an isomorphism.
If p = ∞, then

J∞ : W s,∞
ρ (RN ) → W s,∞(RN ), J∞(u) = uρ

is an isomorphism.

Now we establish Sobolev type inclusions between the spaces W k,p
ρ (RN ) and Lq

ρ
q
p
(RN ) with

weights in the class Rρ1,ρ2,...,ρk
.
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Lemma 2.12.
i) Let 1 < p < ∞, k ∈ N, ρ ∈ Rρ1,...,ρk

and 0 ≤ s ≤ k. Then

W s,p
ρ (RN ) ↪→


Lq

ρ
q
p
(RN ) with p ≤ q

{
≤ Np

N−sp , if s < N
p

< ∞, if s ≥ N
p

L∞
ρ

1
p
(RN ), if s > N

p .

ii) Let 1 < p ≤ q < ∞, k ∈ N, ρ ∈ Rρ1,...,ρk
, 0 ≤ σ ≤ s ≤ k, and s− N

p ≥ σ − N
q . Then

W s,p
ρ (RN ) ⊂ W σ,q

ρ
q
p

(RN ).

If q = ∞, under the same conditions above we have the embedding

W s,p
ρ (RN ) ⊂ W σ,∞

ρ
1
p

(RN ).

Proof. Case i) is a particular case of case ii) with σ = 0. For case ii), if q < ∞, consider the
following commutative diagram

W s,p
ρ (RN ) W σ,q

ρ
q
p

(RN )

W s,p(RN ) W σ,q(RN )

� � //i

��

Jp

� � //i

OO

J−1
q

Let u ∈ W s,p
ρ (RN ) then by Lemma 2.11 we have that Jp(u) := uρ

1
p ∈ W s,p(RN ). From

hypothesis s− N
p ≥ σ − N

q and then

W s,p(RN ) ↪→ W σ,q(RN ).

Then uρ
1
p ∈ W σ,q(RN ), and now we determine the weight ϕ such that using the isomorphism

in Lemma 2.11,
Jq : W σ,q

ϕ (RN ) → W σ,q(RN ), Jq(u) = uϕ1/q

we have uϕ1/q = uρ
1
p . From here ϕ = ρ

q
p and thus we get, u ∈ W σ,q

ρ
q
p

(RN ).

The case q = ∞ is analogous.

We end this section with some remarks about the existence of Sobolev like embeddings for
weighted spaces. The existence of such embeddings will be of importance for the evolution
problems.

Remark 2.13. 1.− For weights ρ(x) → ∞, as |x| → ∞ and, say, ρ(x) ≥ 1, for example,
ρ(x) = (1 + |x|2)γ with γ > 0, if q > p we have the following inclusion

Lq

ρ
q
p
(RN ) ↪→ Lq

ρ(R
N ).
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In fact, if u ∈ Lq

ρ
q
p
(RN ) then since q

p > 1, we have∫
RN

|u(x)|qρ(x) dx ≤
∫
RN

|u(x)|qρ
q
p (x) dx < ∞,

and then u ∈ Lq
ρ(RN ).

Hence, we have the following embeddings similar to the ones in unweighted spaces

W s,p
ρ (RN ) ↪→


Lq

ρ(RN ) with p ≤ q

{
≤ q∗ = Np

N−sp , if s < N
p

< ∞, if s ≥ N
p

L∞
ρ

1
p
(RN ), if s > N

p

2.- On the other hand, for weights ρ(x) → 0 as |x| → ∞ one can construct examples for
which, for q > p,

Lq

ρ
q
p
(RN ) 6↪→ Lq

ρ(R
N ).

For this, let ρ(x) = (1 + |x|2)γ with γ < 0, q > p, and u(x) = (1 + |x|2)r, with r to be chosen
below. Then u ∈ Lq

ρ
q
p
(RN ) if and only if qr + γ q

p < −N
2 , by Lemma 2.3, which is equivalent to

r < (−N
2 − γ q

p )1
q .

On the other hand u 6∈ Lq
ρ(RN ) if rq + γ ≥ −N

2 , that is r ≥ (−N
2 − γ)1

q .
Since q > p then we can find r such that(−N

2
− γ

)1
q
≤ r <

(−N

2
− γq

p

)1
q

and we get the statement.
Finally, one can easily see that u ∈ W k,p

ρ (RN ) if (r− k
2 )p+γ < −N

2 , that is, r < (−N
2 −γ)1

p+ k
2 .

Hence, if γ ≤ −N
2 , q > p and k ≥ 0, we can chose r such that

(
−N

2
− γ)

1
q
≤ r < (

−N

2
− γ)

1
p

+
k

2

and then
W k,p

ρ (RN ) 6↪→ Lq
ρ(R

N )

and there are no inclusions as for the unweighted case.
Finally, the above holds if −N/2 < γ < 0, q > p and some k ≥ 0.

3 The heat and Schrödinger equations in weighted spaces.

In this section we present some results for the linear heat equation in weighted spaces Lq
ρ(RN ).

ut −∆u = 0, x ∈ RN , t > 0.

We will prove that the realization of the linear elliptic operator −∆ in Lq
ρ(RN ), with a weight

in the class ρ ∈ R = Rρ1,ρ2 , generates an analytic semigroup.
In fact this result is obtained from Theorem 5.1 in [6], which holds for more general elliptic

operators.
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Proposition 3.1. Assume ρ ∈ Rρ1,ρ2. For any 1 < q < ∞ the linear unbounded operator
−∆ in Lq

ρ(RN ), with domain W 2,q
ρ (RN ), is such that, ∆ generates an order preserving analytic

semigroup {S(t)}t≥0.
In particular, the heat equation{

ut −∆u = 0, x ∈ RN , t > 0
u(0) = u0 ∈ Lq

ρ(RN )

has a unique solution u(t) := S(t)u0 for t ≥ 0 which is given by

u(t, x) = S(t)u0 = (4πt)
−N
2

∫
RN

e
−|x−y|2

4t u0(y) dy. (3.1)

The fractional power spaces of −∆ in Lq
ρ(RN ), denoted Hα,q

ρ (RN ) coincide with the spaces
Wα,q

ρ (RN ), for 0 ≤ α ≤ 1, given in Definition 2.10.

Proof. Consider the following commutative diagram

Lq
ρ(R

N ) Lq
ρ(R

N )

Lq(RN ) Lq(RN ).

//−∆

��
Jq

//Λ

OO

J−1
q

Multiplying −∆u by ρ
1
q , and using u = wρ

−1
q we get

Λw := (−∆u)ρ
1
q = −∆(wρ

−1
q )ρ

1
q = −∆w +

2
q
(
∇ρ

ρ
)∇w + [

1
q
(
∆ρ

ρ
) +

(−1
q − 1)

q
)
|∇ρ|2

ρ2
]w (3.2)

Since ρ ∈ Rρ1,ρ2 then Λ has bounded coefficients and we can use the results in [3], to obtain that
the realization of Λ in Lq(RN ), with domain W 2,q(RN ) is a sectorial operator in Lq(RN ) and
the fractional power spaces coincide with the complex interpolation spaces between W 2,q(RN )
and Lq(RN ), as in Definition 2.10. The rest follows from Theorem 5.1 [6].

That (3.1) is satisfied follows from the density in Lemma 2.8 and the estimates in Proposition
3.2, below, with r = q. From this, we get that the semigroup {S(t)}t≥0 is order preserving in
Lq

ρ(RN ).

We preset now some results on the solution of the heat equation in the spaces Lq
ρ(RN ).

Observe that the norm of the solution is estimated in a weighted space with a different weight
than that of the initial data.

Proposition 3.2. For each 1 ≤ q ≤ r < ∞ and u0 ∈ Lq
ρ(RN ), we have, for a certain constant

M and t > 0
(i) For each weight ρ ∈ Rρ1,ρ2

‖u(t)‖Lr

ρ
r
q

(RN ) ≤ Mt
−N
2

[ 1
q
− 1

r
][1 + eρ2

1Ntt
N
2

(1− 1
q
+ 1

r
)]‖u0‖Lq

ρ(RN )

‖u(t)‖L∞

ρ
1
q

(RN ) ≤ Mt
−N
2q [1 + eρ2

1Ntt
N
2

(1− 1
q
)] ‖u0‖Lq

ρ(RN ),
(3.3)
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(ii) In particular if ρ ∈ C2(RN ) is such that ρ(x) = eµ|x|, for |x| ≥ 1, with µ ∈ R, we have (3.3)
replacing ρ2

1N by |µ|2,
(iii) If ρ(x) = (1 + |x|2)γ, γ ∈ R then

‖u(t)‖Lr

ρ
r
q

(RN ) ≤ Mt
−N
2

[ 1
q
− 1

r
][1 + t

|γ|
q ] ‖u0‖Lq

ρ(RN ).

‖u(t)‖L∞

ρ
1
q

(RN ) ≤ Mt
−N
2q [1 + t

|γ|
q ] ‖u0‖Lq

ρ(RN ).

Proof. Using (3.1) and multiplying by ρ ∈ Rρ1,ρ2

u(t, x, u0)ρ(x) = (4πt)
−N
2

∫
RN

e
−|x−y|2

4t u0(y)ρ(x) dy = (4πt)
−N
2

∫
RN

e
−|x−y|2

4t
ρ(x)
ρ(y)

u0(y)ρ(y) dy.

From Lemma 2.3, we have ρ(x)
ρ(y) ≤ CR(|x − y|) with R(|z|) =

 e
√

Nρ1|z|, in case (i)
e|µ||z|, in case (ii)
(1 + |z|2)|γ|, in case (iii)

, and

then we get

|u(t, x, u0)ρ(x)| ≤ C(4πt)
−N
2

∫
RN

e
−|x−y|2

4t R(|x− y|) |u0(y)|ρ(y) dy.

Denoting M(t)(z) := e
−|z|2

4t R(|z|) we have

‖u(t)ρ‖Lr(RN ) ≤ C1(4πt)
−N
2 ‖M(t) ∗ |u0|ρ‖Lr(RN ).

Young’s inequlity, see [12] page 77, implies that with 1
r = 1

p + 1
q − 1 ≥ 0,

‖u(t)ρ‖Lr(RN ) ≤ C1(4πt)
−N
2 ‖M(t)‖Lp(RN )‖u0ρ ‖Lq(RN ). (3.4)

Now, we estimate the integral above. For the case (i), we have

I(t) = ‖M(t)‖Lp(RN ) =
( ∫

RN

e(
−|z|2

4t
)pe

√
Nρ1|z|p dz

) 1
p

= C(
∫ ∞

0
e(−r2

4t
+
√

Nρ1r)prN−1 dr)
1
p .

Let y(r) := −r2

4t +
√

Nρ1r, which is positive in (0, 4t
√

Nρ1) and negative in (4t
√

Nρ1,∞).
In the interval [0, 4t

√
Nρ1] the maximum value is attained at the point r = 2t

√
Nρ1 and the

maximum value is tρ2
1N . Since −r2

4t +
√

Nρ1r ≤ −r2

8t , if r > 8
√

Nρ1t, we get

I(t) ≤ C

( ∫
r≥8t

√
Nρ1

e
−r2p

8t rN−1 dr +
∫

0≤r≤8t
√

Nρ1

e(−r2

4t
+
√

Nρ1r)prN−1 dr

) 1
p

.

(3.5)

In the inequality above the second term can be bounded above by the area of the square of base
length 8

√
Nρ1t and height the maximum value of eptρ2

1N , that is,∫
0≤r≤8t

√
Nρ1

e(−r2

4t
+
√

Nρ1r)prN−1 dr ≤ eptρ2
1N (8

√
Nρ1t)N (3.6)
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and from (3.5) and (3.6) we obtain

I(t) ≤ C

( ∫
r≥8t

√
Nρ1

e
−r2p

8t rN−1 dr + eptρ2
1N (8t

√
Nρ1)N

) 1
p

.

Using the change of variables r = z
√

8t, we get

I(t) ≤ Ct
N
2p

( ∫
z≥
√

8t
√

Nρ1

e−z2pzN−1 dz + t
N
2 eρ2

1Ntp

) 1
p

= Ct
N
2p I

1
p

0 (t).

Thus I0(t) =

{
∼ t

N
2 eρ2

1Npt t >> 1
≤ C, t ∼ 0,

and then I0(t) ≤ C(1+ t
N
2 eρ2

1Ntp) for all t > 0, which

implies

‖M(t)‖Lp(RN ) = I(t) ≤ Ct
N
2p (1 + t

N
2p eρ2

1Nt). (3.7)

Resuming the proof, from (3.4) and (3.7) we get

‖u(t)ρ‖Lr(RN ) ≤ Ct
−N
2

(1− 1
p
)(1 + t

N
2p eρ2

1Nt)‖u0ρ‖Lq(RN )

where p, q and r satisfy 1− 1
p := 1

q −
1
r .

Finally, we get

‖u(t)ρ‖Lr(RN ) ≤ Ct
−N
2

( 1
q
− 1

r
) [1 + eρ2

1Ntt
N
2

[ 1
r
− 1

q
+1]] ‖u0ρ‖Lq(RN ). (3.8)

Replacing ρ by ρ
1
q ,

‖u(t)‖Lr

ρ
r
q

(RN ) ≤ Ct
−N
2

( 1
q
− 1

r
) [1 + eρ2

1Ntt
N
2

[ 1
r
− 1

q
+1]] ‖u0‖Lq

ρ(RN ). (3.9)

If r = ∞, we consider (3.8) to get

‖u(t)ρ‖L∞(RN ) ≤ Ct
−N
2q (1 + eρ2

1Ntt
N
2

[1− 1
q
])‖u0ρ‖Lq(RN ). (3.10)

Replacing ρ by ρ
1
q , from (3.9) and (3.10) we get (3.3).

The case (ii) is immediate.
For the case (iii), with the change z = w

√
t we get in (3.4)

‖M(t)‖Lp(RN ) =
( ∫

RN

e(
−|z|2

4t
)p(1 + |z|2)|γ|p dz

) 1
p

=
( ∫

RN

e(
−|w|2

4
)p(1 + |w

√
t|2)p|γ|t

N
2 dw

) 1
p

≤ t
N
2p C

( ∫
RN

e(
−|w|2

4
)p(1 + |w

√
t|2p|γ|) dw

) 1
p

≤ Ct
N
2p

[ ∫
RN

e(−w2

4
)p dw + tp|γ|

∫
RN

e(−w2

4
)p|w|2p|γ| dw

] 1
p

≤ Ct
N
2p (1 + t|γ|). (3.11)
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Hence, considering (3.11) in (3.4) we arrive at

‖u(t)ρ‖Lr(RN ) ≤ C2t
−N
2

[1− 1
p
](1 + t|γ|)‖u0ρ‖Lq(RN ).

Since 1− 1
p := 1

q −
1
r , we obtain

‖u(t)ρ‖Lr(RN ) ≤ C2t
−N
2

[ 1
q
− 1

r
](1 + t|γ|)‖u0ρ‖Lq(RN ). (3.12)

Replacing ρ by ρ
1
q , we get

‖u(t)‖Lr

ρ
r
q

(RN ) ≤ C2t
−N
2

[ 1
q
− 1

r
](1 + t

|γ|
q )‖u0‖Lq

ρ(RN ).

If r = ∞, from (3.12), replacing ρ by ρ
1
q we get

‖u(t)‖L∞

ρ
1
q

(RN ) ≤ C2t
−N
2q (1 + t

|γ|
q )‖u0‖Lq

ρ(RN ).

Observe that the key point in the proof above is the Gaussian structure of the heat kernel.
Hence, the results above for −∆ can be obtained for other elliptic operators with a similar bound
for the corresponding parabolic kernel. Therefore, using the results in [16] we have the following
corollary,

Corollary 3.3. Assume the differential operator L is given by

L(u) := −
N∑

i,j=1

∂i

(
ai,j(x)∂ju + ai(x)u

)
+ bi(x)∂iu + c0(x)u

with real coefficients ai,j, ai, bi, c0 in L∞(RN ) and satisfying the ellipticity condition

N∑
i,j=1

ai,j(x)ξiξj ≥ α0|ξ|2, for some α0 > 0, and for each ξ ∈ RN .

Then the fundamental solution of the parabolic problem ut + Lu = 0 en RN satisfies a Gaussian
bound

0 ≤ k(x, y, t, s) ≤ C(t− s)
−N
2 ew(t−s)e

−c
|x−y|2
(t−s) for t > s and x, y ∈ RN .

where, C, c, w depend on the L∞ norm of the coefficients.
Therefore, the semigroup generated by −L is given by

u(t, x) := TL(t)u0 =
∫
RN

k(x, y, t, 0)u0(y) dy

and satisfies the estimates in Proposition 3.2.
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For its importance in applications we discuss in this section Schrödinger operators in weighted
spaces, with ρ ∈ Rρ1,ρ2 . Hence, we consider the linear parabolic equation{

ut −∆u = V (x)u, x ∈ RN , t > 0
u(0) = u0 ∈ Lq

ρ(RN )

and we consider a class of potentials that admit local singularities and have no prescribed
behavior at infinity, that we denote Lσ

U (RN ), 1 ≤ σ ≤ ∞, which is defined as

Lσ
U (RN ) := {V ∈ Lσ

loc(R
N ) : sup

x∈RN

∫
B(x,1)

|V (y)|σ dy < ∞}

with norm

‖V ‖Lσ
U (RN ) := sup

x∈RN

‖V ‖Lσ(B(x,1)).

These spaces are named uniform spaces in the literature, see for instance [6] and references
therein.

The results below hold for more general operators than −∆, but we will focus in operator of
the form −∆− V (x)I, where V is a potential in Lσ

U (RN ), σ > N
2 , σ ≥ 1.

Then we have

Theorem 3.4. Let V ∈ Lσ
U (RN ) with σ > N

2 , σ > 1. Then for each 1 < q < σ the operator
∆+V (x)I, with domain W 2,q

ρ (RN ), generates an order preserving analytic semigroup in Lq
ρ(RN ),

SV (t), and with the same fractional power spaces than −∆.
The semigroup is given by the variation of constants formula

u(t) = e(∆+V )tu0 = e∆tu0 +
∫ t

0
e∆(t−s)V (x)u(s) ds.

Proof. From Proposition 3.1 we have that for each 1 < q < ∞ the operator ∆ with domain
W 2,q

ρ (RN ) generates an order preserving analytic semigroup in Lq
ρ(RN ).

Denote by P the operator

P : Lr
ρ(R

N ) → Lq
ρ(R

N ), P (u)(x) = V (x)u(x).

We show below that P is bounded if 1
σ + 1

r = 1
q and 1 ≤ q < σ. For this, we first decompose

RN in cubes in the following way: for each i ∈ ZN , denote by Qi the open cube in RN centered at
i, with sides of length 1 and parallel to the axes. Then Qi∩Qj = ∅ for i 6= j and RN = ∪i∈ZN Qi.

From Hölder’s inequality

‖V u‖q
Lq

ρ(RN )
=

∫
RN

|V (x)|q|u(x)|qρ(x) dx =
∑

i∈ZN

∫
Qi

|V (x)|q|u(x)|qρ(x) dx

≤
∑

i∈ZN

‖V ‖q
Lσ(Qi)

‖uρ
1
q ‖q

Lr(Qi)
, with

1
σ

+
1
r

=
1
q

(3.13)

which is possible since 1 ≤ q < σ.
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Sobolev inclusions imply then

W 2,q(Qi) ↪→ Ls(Qi), with s such that 2− N

q
=
−N

s

or equivalently 2
N − 1

q = −1
s , with constants independent of i. Since 1

q = 1
σ + 1

r , using σ > N
2 we

get q < r < s.
Interpolating with 1

r = θ 1
q + (1− θ)1

s we get

‖uρ
1
q ‖q

Lr(Qi)
≤ ‖uρ

1
q ‖q(1−θ)

Ls(Qi)
‖uρ

1
q ‖qθ

Lq(Qi)
≤ ‖uρ

1
q ‖(1−θ)q

W 2,q(Qi)
‖uρ

1
q ‖qθ

Lq(Qi)

Now Young’s inequality yields

‖uρ
1
q ‖q

Lr(Qi)
≤ ε‖uρ

1
q ‖q

W 2,q(Qi)
+ Cε‖uρ

1
q ‖q

Lq(Qi)
,

and then

‖V u‖q
Lq

ρ(RN )
≤

∑
i∈ZN

‖V ‖q
Lσ(Qi)

‖uρ
1
q ‖q

Lr(Qi)

≤ ‖V ‖q
Lσ

U (RN )

∑
i∈ZN

[
ε‖uρ

1
q ‖q

W 2,q(Qi)
+ Cε‖uρ

1
q ‖q

Lq(Qi)

]

≤ ‖V ‖q
Lσ

U (RN )

[
ε‖uρ

1
q ‖q

W 2,q(RN )
+ Cε‖uρ

1
q ‖q

Lq(RN )

]
.

Hence, relabeling the coefficients, we get

‖V u‖q
Lq

ρ(RN )
≤ ε‖u‖q

W 2,q
ρ (RN )

+ Cε‖u‖q
Lq

ρ(RN )
.

By [20], Theorem 1.3.2, we have that ∆+V (x)I generates an analytic semigroup in Lq
ρ(RN ).

Now we prove that −∆ − V (x)I has the same fractional power spaces than −∆. For this,
by Theorem 1.4.8 in [20] it suffices to prove that

‖V u‖Lq
ρ(RN ) ≤ C‖u‖

H2α,q
ρ (RN )

, for some 0 ≤ α < 1.

We estimate above and below (3.13) and for this we use the inclusions

H2α,q(Qi) ↪→ Lr(Qi), for 2α− N

q
≥ −N

r
, 0 ≤ α < 1

with constants independent of i.
Using the relationship among σ, r and q as in (3.13) we get 2α ≥ N

σ , which holds for some
0 ≤ α < 1 because σ > N

2 . From this we get

‖V u‖q
Lq

ρ(RN )
≤ C‖V ‖q

Lσ
U (RN )

∑
i∈ZN

‖uρ
1
q ‖q

H2α,q(Qi)
≤ C‖V ‖q

Lσ
U (RN )

‖uρ
1
q ‖q

H2α,q(RN )

where the last inequality comes from Lemma 2.4 in [7]. Since the norms ‖u‖
H2α,q

ρ (RN )
and

‖uρ
1
q ‖H2α,q(RN ), are equivalent, we get

‖V u‖Lq
ρ(RN ) ≤ C‖V ‖Lσ

U (RN )‖u‖H2α,q
ρ (RN )

, for some 0 < α < 1.
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To prove the order preserving property observe that from the results in [27], the semigroup
generated by ∆+V (x)I is order preserving in Lq(RN ), for 1 ≤ q ≤ ∞. Hence, from density, see
Lemma 2.8, we get the result.

In the following result we prove weighted Lq − Lr estimates for the Schrödinger semigroup,
analogous to the ones for the heat equation.

Theorem 3.5. Let ρ ∈ Rρ1,ρ2, V ∈ Lσ
U (RN ) with σ > N

2 . Then there exists constants a and
M depending only on N , σ and ‖V ‖Lσ

U (RN ) such that for each 1 ≤ q ≤ r < ∞, t > 0 and
u0 ∈ Lq

ρ(RN ) we have the following estimates
‖e(∆+V )tu0‖Lr

ρ
r
q

(RN ) ≤ Meatt
−N

2
[ 1
q
− 1

r
]‖u0‖Lq

ρ(RN )

‖e(∆+V )tu0‖L∞

ρ
1
q

(RN ) ≤ Meatt
−N
2q ‖u0‖Lq

ρ(RN ).

Proof. We prove below that the estimate

‖u(t)ρ‖Lr(RN ) ≤ Mt
−N
2

[ 1
q
− 1

r
]‖u(0)ρ‖Lq(RN ), 0 < t ≤ τ0 (3.14)

holds for some small time interval 0 < t ≤ τ0, for some τ0 and M , depending only on N , σ, and
‖V ‖Lσ

U (RN ). Once we show this, we extend the estimate for arbitrary t. In fact, if t ≥ τ0 then
we decompose it as t = nτ0 + s for some 0 ≤ s < τ0. Iterating n times (3.14) with q = r and
denoting u(t) = e(∆+V )tu0, we get

‖u(t)ρ‖Lr(RN ) ≤ M‖u(nτ0)ρ‖Lr(RN ) ≤ M2‖u((n− 1)τ0)ρ‖Lr(RN )

≤ Mn‖u(τ0)ρ‖Lr(RN ) ≤ Mn+1τ
−N
2

[ 1
q
− 1

r
]

0 ‖u(0)ρ‖Lq(RN ),

where we have used (3.14) for time τ0 in the last step. Hence, since τ0 ≤ t < (n+1)τ0, t = nτ0+s,
we get for t ≥ τ0

‖u(t)ρ‖Lr(RN ) ≤ Mn+1τ
−N
2

[ 1
q
− 1

r
]

0 ‖u(0)ρ‖Lq(RN ) ≤ M1e
att

−N
2

[ 1
q
− 1

r
]‖u(0)ρ‖Lq(RN ). (3.15)

Putting together the estimates for 0 < t ≤ τ0 and t ≥ τ0, we get (3.15) for any t > 0. Replacing
ρ by ρ

1
q we get the result.

Now we show the estimate (3.14) for 0 < t ≤ τ0, and some small τ0 > 0.
Denoting u(t) = e(∆+V )tu0, the semigroup e(∆+V )tu0 can be expressed in terms of the vari-

ation of constants formula as

u(t) = e(∆+V )tu0 = e∆tu0 +
∫ t

0
e∆(t−s)V (x)u(s) ds. (3.16)

Then, for 1 ≤ q ≤ r ≤ ∞ and u0 ∈ Lq
ρ(RN ), multiplying (3.16) by ρ ∈ Rρ1,ρ2 and taking the

norm in Lr(RN )

‖u(t)ρ‖Lr(RN ) ≤ ‖e∆tu0 ρ‖Lr(RN ) +
∫ t

0
‖e∆(t−s)V u(s)ρ‖Lr(RN ) ds
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From the smoothing of the linear heat equation in Proposition 3.2, for f1(t) = (1+eρ2
1Ntt

N
2

[ 1
r
− 1

q
+1])

and f2(t) = (1 + eρ2
1Ntt

N
2

[ 1
r
− 1

τ
+1]) we have

‖u(t)ρ‖Lr(RN ) ≤ Mt
−N

2
[ 1
q
− 1

r
]
f1(t)‖u0ρ‖Lq(RN ) +

∫ t

0
M(t− s)−

N
2

[ 1
τ
− 1

r
]f2(t− s)‖V u(s)ρ‖Lτ (RN ) ds

for some τ to be chosen.
Since 1− 1

q + 1
r and 1− 1

τ + 1
r are less than 1, for t

N
2 < 1 we have |f1(t)| ≤ 2 and |f2(t)| ≤ 2,

for t ∈ [0, τ0], for some τ0 independent of q, r, τ . Thus,

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ) + 2

∫ t

0
M(t− s)−

N
2

[ 1
τ
− 1

r
]‖V u(s)ρ‖Lτ (RN ) ds

≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ) + 2

∫ t

0
M(t− s)−

N
2

[ 1
τ
− 1

r
]‖V ‖Lσ

U (RN )‖u(s)ρ‖Lη(RN ) ds

(3.17)

with 1
τ = 1

σ + 1
η , where we have used Hölder’s inequality in the last step. Defining η := max {σ′, r}

then we can always find τ ≥ 1 such that the above is satisfied.
According to the choice of η we have that the exponent in the integral above (3.17) satisfies:

1 ≤ r ≤ σ′ then η = σ′ and thus τ = 1. If r ≥ σ′ then η = r and τ ≥ 1. Therefore

N

2
(
1
τ
− 1

r
) ≤

{
N
2 (1− 1

r ) = N
2r′ ≤

N
2σ < 1, si 1 ≤ r ≤ σ′

N
2σ < 1, si r ≥ σ′.

The rest of the proof is done in several steps.
Step 1.− Assume r ≥ σ′ and 0 ≤ N

2 (1
q −

1
r ) ≤ α, where α = N

2σ < 1 if σ < ∞, or α = 1
2 , if

σ = ∞. With this, (3.17) leads to

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ) + 2M‖V ‖Lσ

U (RN )

∫ t

0
(t− s)−

N
2σ ‖u(s)ρ‖Lr(RN ) ds.

Using the auxiliary function h(t) := t
N
2

[ 1
q
− 1

r
]‖u(t)ρ‖Lr(RN ), we have

h(t) ≤ 2M‖u0ρ‖Lq(RN ) + 2M‖V ‖Lσ
U (RN )t

N
2

[ 1
q
− 1

r
]
∫ t

0
(t− s)−

N
2σ h(s)s−

N
2

[ 1
q
− 1

r
]
ds

≤ 2M‖u0ρ‖Lq(RN ) + 2M‖V ‖Lσ
U (RN )t

N
2

[ 1
q
− 1

r
] sup
0≤s≤t

h(s)
∫ t

0
(t− s)−

N
2σ s

−N
2

[ 1
q
− 1

r
]
ds.

(3.18)

Now we change variables as s = zt to obtain∫ t

0
(t− s)−

N
2σ s

−N
2

[ 1
q
− 1

r
]
ds = t1−

N
2σ t

−N
2

[ 1
q
− 1

r
]
∫ 1

0
(1− z)−

N
2σ z

−N
2

[ 1
q
− 1

r
]
dz.

Using this in (3.18)

h(t) ≤ 2M‖u0ρ‖Lq(RN ) + 2 M‖V ‖Lσ
U (RN )t

1− N
2σ sup

0≤s≤t
h(s)

∫ 1

0
(1− z)−

N
2σ z

−N
2

[ 1
q
− 1

r
]
dz

(3.19)
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The integral above is finite with a bound independent of q and r, since we are assuming N
2 [1q−

1
r ] ≤

α < 1. Hence, we can chose τ0 > 0 depending only on M0, σ and ‖V ‖Lσ
U (RN ), such that

τ
1− N

2σ
0 ‖V ‖Lσ

U (RN )2M

∫ 1

0
(1− z)−

N
2σ z

−N
2

[ 1
q
− 1

r
]
dz ≤ 1

2
.

Thus, from (3.19), for 0 ≤ t ≤ τ0 we get

h(t) ≤ 2M‖u0ρ‖Lq(RN ) +
1
2

sup
0≤s≤τ0

h(s),

and then there exists τ0 such that for 0 ≤ t ≤ τ0 we obtain

h(t) ≤ 4M‖u0ρ‖Lq(RN ).

This implies

‖u(t)ρ‖Lr(RN ) ≤ 4Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ) (3.20)

as long as r ≥ σ′ and 0 ≤ N
2 [1q −

1
r ] ≤ α, for some τ0 with 0 ≤ t ≤ τ0.

Step 2.− Assume 1 ≤ r < σ′, 1 ≤ q ≤ r.
If σ = ∞ this case is empty. Hence, we assume below that σ < ∞.
If 1 ≤ r < σ′, we have η = σ′. Thus for 1 ≤ q ≤ r, equation (3.17) turns into

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ) + 2M‖V ‖Lσ

U (RN )

∫ t

0
(t− s)−

N
2σ ‖u(s)ρ‖Lσ′ (RN )

Considering r = σ′ in Step 1, we have that for all q with 0 ≤ N
2 (1

q −
1
r ) ≤ N

2σ , the estimate (3.20)
holds with r = σ′. But this last restriction when r = σ′ is equivalent to 1 ≤ q ≤ r, then we can
use the estimate (3.20) for r = σ′ and 1 ≤ q ≤ r, to obtain for some τ0 and 0 ≤ t ≤ τ0,

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN )

+ 8M2‖V ‖Lσ
U (RN )‖u0ρ‖Lq(RN )

∫ t

0
(t− s)−

N
2σ s

−N
2

[ 1
q
− 1

σ′ ] ds.

Changing variables as (3.19) we get

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN )

+ 8M2‖V ‖Lσ
U (RN )‖u0ρ‖Lq(RN )t

1− N
2σ t

−N
2

[ 1
q
− 1

σ′ ]
∫ 1

0
(1− z)−

N
2σ z

−N
2

[ 1
q
− 1

σ′ ] dz.

This integral is finite and bounded by a constant C only depending on N and σ. Hence,

‖u(t)ρ‖Lr(RN ) ≤ 2Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN )

(
1 + ‖V ‖Lσ

U (RN )4MCt1−
N
2σ

)
Therefore, for some τ0 depending on σ, N , and ‖V ‖Lσ

U (RN )

‖u(t)ρ‖Lr(RN ) ≤ M̂t
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ), 0 < t ≤ τ0.
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Step 3.− Summarizing Steps 1 and 2, we have found constants M , τ0 depending only on N ,
σ and ‖V ‖Lσ

U (RN ) such that for all 1 ≤ q ≤ r < ∞ with N
2 [1q −

1
r ] ≤ α, we have

‖u(t)ρ‖Lr(RN ) ≤ Mt
−N

2
[ 1
q
− 1

r
]‖u0ρ‖Lq(RN ), 0 ≤ t ≤ τ0. (3.21)

Now observe that there exists a natural number K and a partition of the interval [1,∞], of the
form 1 = r0 < r1 < r2..... < rK = ∞, and such that for each q, r with rk ≤ q ≤ r ≤ rk+1, we
have N

2 [1q −
1
r ] ≤ α.

Therefore, for each 1 ≤ q ≤ r < ∞, there exists k and h such that q ∈ [rk, rk+1] and
r ∈ [rk+h, rk+h+1]. For each 0 < t < τ0 we take a partition of [0, t] in h+1 subintervals of lenght

t
h+1 and iterate the inequality (3.21) from

q → rk+1 → rk+2...... → rk+h → r,

h + 1 times, to obtain

‖u(t)ρ‖Lr(RN ) ≤ M(
t

h + 1
)
−N

2
[ 1
rk+h

− 1
r
]‖u(

th

h + 1
)ρ‖Lrk+h (RN )

‖u(
t

h + 1
)ρ‖Lrk+h (RN ) ≤ M(

t

h + 1
)
−N

2
[ 1
rk+h−1

− 1
rk+h

]‖u(
(h− 1)t
h + 1

)ρ‖Lrk+h−1 (RN )

...

‖u(
2t

h + 1
)ρ‖Lrk+2 (RN ) ≤ M(

t

h + 1
)
−N

2
[ 1
rk+1

− 1
rk+2

]‖u(
t

h + 1
)ρ‖Lrk+1 (RN )

‖u(
t

h + 1
)ρ‖Lrk+1 (RN ) ≤ M(

t

h + 1
)
−N

2
[ 1
q
− 1

rk+1
]‖u(0)ρ‖Lq(RN ).

Multiplying term to term, we get

‖u(t)ρ‖Lr(RN ) ≤ Mh+1(
t

h + 1
)
−N
2

[ 1
q
− 1

r
]‖u(0)ρ‖Lq(RN ).

As h + 1 ≤ K + 1, we obtain

‖u(t)ρ‖Lr(RN ) ≤ Lt
−N
2

[ 1
q
− 1

r
]‖u(0)ρ‖Lq(RN ), 0 < t ≤ τ0

where L = MK+1(K + 1)
N
2 , which depends only on N and ‖V ‖Lσ

U (RN ).

Now we want to characterize when the Schrödinger semigroup decays exponentially. In other
words, we would like to characterize the best constant in the estimates in Theorem 3.5 when
r = q.

Let −A be the infinitesimal generator of a C0 semigroup, S(t) = e−At, in a Banach space X.

Definition 3.6. The exponential type of the semigroup e−At is

σ0 := inf{σ ∈ R : ‖e−At‖L(X,X)e
−σt is bounded in t ∈ (0,∞)}

or equivalently

σ0 = inf{λ ∈ R : ‖e−(A+λI)t‖L(X,X) decays exponentially}.
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Now we will study the exponential type of Schrödinger operators of the form A = −∆ +
m(x)I, m ∈ Lσ

U (RN ), σ > N
2 in the weighted spaces Lq

ρ(RN ). For this we first state some
properties of these operators in spaces without weight.

First, observe that considering the operator A in the unweighted space Lq(RN ), the expo-
nential type is independent of q and coincides with the one in L2(RN ), which is given by

− Σ0(−∆ + mI) = inf
ϕ∈H1(RN )

∫
RN |∇ϕ(x)|2 dx +

∫
RN m(x)ϕ2(x) dx∫

RN |ϕ(x)|2 dx
. (3.22)

For more details see [27]. As mentoned in the introduction, note that −∆ + m(x)I is not
selfadjoint in L2

ρ(R
N ), see [14, 15].

Now we state a Lemma that will be very important below; for more details see [7]

Lemma 3.7. Assume V ∈ Lσ
U (Ω) for some σ > N

2 and it is such that the semigroup SV (t)
decays exponentially with a decay rate µ < 0, with

− µ < −Σ0(−∆ + mI). (3.23)

Then
(i) There exists δ0 > 0 such that for every λ ∈ (0, 1 + δ0) the semigroup SλV (t) decays

exponentially with a decay rate µ(λ) < 0, which is continuous in λ.
(ii) There exists C(µ) such that if P ∈ Lp

U (Ω), with p > N
2 , with negative part such that

‖P−‖Lp
U (Ω) ≤ C(µ), then the semigroup SV +P (t) also decays exponentially.

Now we give a useful consequence of the previous lemma.

Lemma 3.8. Let m ∈ Lσ
U (RN ), σ > N

2 , σ > 2. Then Σ0(−∆ + λmI) is a continuous functions
of λ.

Proof. Let λ0 ∈ R and A = −∆ + λ0m(x)I. If σ is such that
‖e−At‖L(L2,L2)

eσt ≤ K, for every
0 < t < ∞, then we have that ‖e−(A+σI+εI)t‖L(L2,L2) decays exponentially for every ε > 0.

Consider the potential V (x) = λ0m(x) + σ + ε, by Lemma 3.7 there exists δ0 such that
Σ0(−∆ + µV I) is continuous for µ ∈ (0, 1 + δ0). Moreover, we have

−Σ0(−∆ + µV I) = Σ0(−∆ + µλ0m) + µ(σ + ε)

Thus, we have that Σ0(−∆ + λmI) with λ = µλ0 is also a continuous function in a neigh-
borhood of λ0.

Observe that considering the operator A in the spaces Lq
U (RN ), it was proved in [6] that the

exponential type is independent of q and coincides with the one in Lr(RN ). That is, it is given
by σ0(L2), in (3.22).

Now in the space Lq
ρ(RN ) we do not know if such property is true in general, although we

prove the following

Proposition 3.9. Assume m ∈ Lσ
U (RN ), σ > N

2 , σ > q > 1 and ρ ∈ Rρ1,ρ2.
i) For sufficiently small ε we have

σ0(−∆ + mI, Lq
ρε

(RN )) = Σ0(−∆ + mI)
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where ρε(x) = ρ(εx).
ii) If for every small ε > 0

lim
|x|→∞

ρ(εx)
ρ(x)

= Cε > 0

then
σ0(−∆ + mI, Lq

ρ(R
N )) = Σ0(−∆ + mI)

Proof. Denote A = −∆ + m(x)I. Given δ ∈ R, consider the isomorphism in Proposition 2.9.
Then we have

Lq
ρ(R

N ) Lq
ρ(R

N )

Lq(RN ) Lq(RN )

//A+δI

��
Jq

//L(δ)

OO

J−1
q

with

L(δ) := −∆ +
2
q

∇ρ

ρ
∇+ [

1
q

∆ρ

ρ
−

(1 + 1
q )

q

|∇ρ|2

ρ2
]I + m(x)I + δI

as in (3.2) and we have ‖e−(A+δI)t‖L(Lq
ρ(RN )) = ‖e−Lt‖L(Lq(RN )).

The construction above for the weight ρε(x) gives

L(δ) := A +
2
q

∇ρε

ρε
∇+ [

1
q

∆ρε

ρε
−

(1 + 1
q )

q

|∇ρε|2

ρ2
ε

]I + δI.

Thus, we define V 1
ε (x) = 2

q
∇ρε

ρε
and V 2

ε (x) = 1
q

∆ρε

ρε
−

(1+ 1
q
)

q
|∇ρε|2

ρ2
ε

. By Lemma 2.3 we have
|V 1

ε (x)| ≤ C1ε and |V 2
ε (x)| ≤ C2ε

2.
Denoting L1 := A + V 1

ε (x)∇+ δI, we can express L as

L(δ) = L1 + V 2
ε (x)I

and the perturbation Pε : Lq(RN ) → Lq(RN ) defined by Pε(u) = V 2
ε (x)u, satisfies

‖Pεu‖Lq(RN ) ≤ Cε2‖u‖Lq(RN ).

By Lemma 3.10 below, e−L(δ)t and e−L1t have the same exponential decay in Lq(RN ) for ε
small enough.

Again we have L1 = A + V 1
ε (x)∇+ δI and now the perturbation Qε : H1,q(RN ) → Lq(RN )

defined by Qε(u) = V 1
ε (x)∇u, satisfies

‖Qεu‖Lq(RN ) ≤ C0ε‖u‖H1,q(RN ).

Again by Lemma 3.10, e−L1t and e−(A+δ)t have the same exponential decay in Lq(RN ) for ε
small enough. This gives part i).

Part ii) follows from the above and Remark 2.7.
Now we prove the lemma used above.
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Lemma 3.10. Assume A is a sectorial operator in a Banach space X with fractional power
spaces Xα. Assume for ε > 0, Pε : Xα → X, with α ∈ [0, 1), is a linear perturbation such that

‖Pε‖L(Xα,X) ≤ εC.

Then if ε is small enough, the semigroup generated by −A, that is, e−At, decays exponentially
in X if and only if the semigroup e−(A+Pε)t decays exponentially in X.

Proof. Consider u(t) := e−(A+Pε)tu0 the solution of{
ut + Au = −Pε(u)
u(0) = u0 ∈ X.

Using the variation of constants formula, we have for t > 0

u(t, u0) = e−Atu0 −
∫ t

0
e−A(t−s)Pε(u(s)) ds

Taking the norm of Xα, using the smoothing of the semigroup and the assumption on the
perturbation, we get that for some λ > 0

‖u(t)‖Xα ≤ Me−λt

tα
‖u0‖X + εCM

∫ t

0

e−λ(t−s)

(t− s)α
‖u(s)‖Xα ds.

From this, for t > 0

tαeλt‖u(t)‖Xα ≤ M‖u0‖X + εCMtα
∫ t

0
(t− s)−αs−α[sαeλs‖u(s)‖Xα ] ds.

Denoting K(t) := sups∈[0,t] s
αeλs‖u(s)‖Xα , then for any fixed T > 0 and for all 0 < t < T ,

tαeλt‖u(t)‖Xα ≤ M‖u0‖X + εCMK(T )tα
∫ t

0
(t− s)−αs−α ds. (3.24)

Changing variables as s := ty∫ t

0
(t− s)−αs−α ds = t1−2α

∫ 1

0
(1− y)−αy−α dy := βt1−2α

we get in (3.24)

tαeλt‖u(t)‖Xα ≤ M‖u0‖X + εCMt1−αK(T )β.

Now taking the sup in t ∈ (0, T )

K(T ) ≤ M‖u0‖+ εCMT 1−αK(T )β.

Let C0 := CMβ, if εC0T
1−α < 1 then K(T ) ≤ M

1−εC0T 1−α ‖u0‖. In particular, for t ∈ (0, T ],

tαeλt‖u(t)‖Xα ≤ M‖u0‖
1−εC0T 1−α . Hence

‖u(T )‖X ≤ C‖u(T )‖Xα ≤ MC

1− εC0T 1−α

e−λT

Tα
‖u0‖X .
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Let T be such that α0 := MCe−λT

T α < 1
4 . Taking ε0, such that ε0C0T

1−α < 1
2 , then for every ε,

with ε ∈ (0, ε0) we get ‖u(T )‖X ≤ 2α0‖u0‖X , for every u0 ∈ X, which implies

‖e−(A+Pε)T ‖ ≤ 2α0 <
1
2

for every ε ∈ (0, ε0).

Iterating the semigroup we get that ‖e−(A+Pε)t‖ → 0 exponentially.
The converse is now immediate.

Another property that will be needed below is the following consequence of the Lumer–
Phillips Theorem, see [23], which holds in Hilbert spaces.

Lemma 3.11. Assume −A is the generator of a C0 semigroup in a real Hilbert space H with
scalar product <,>. Then they are equivalent

(i) < Au, u >≥ −µ|u|2, for every u ∈ D(A), µ ∈ R.
(ii) ‖e−At‖L(H,H) ≤ eµt

Proof. (i) holds iff A + µI is dissipative, which by the Lummer Phillips Theorem, holds iff
−A− µI generates a contraction semigroup, ‖e−(A+µI)t‖ ≤ 1, which is equivalent to (ii).

Remark 3.12. (i) In the conditions of the Lemma, if we take an equivalent norm in H, then
‖e−At‖ ≤ Meµt.

(ii) Hence, if we define

−µ := inf
u∈D(A)

< Au, u >

|u|2
.

Then for all σ such that −σ < −µ, we have < Au, u >≥ −σ|u|2 and from here we obtain
‖e−At‖ ≤ eσt. Then by definition of exponential type we get σ ≥ σ0, that is

µ ≥ σ0.

For the operator A = −∆ + m(x)I, m ∈ Lσ
U (RN ), σ > N

2 , σ > 2 in L2
ρ(R

N ), we have the
following

Proposition 3.13. Consider the operator A = −∆ + m(x)I, m ∈ Lσ
U (RN ), σ > N

2 , σ > 2 in
L2

ρ(R
N ), for an arbitrary weight ρ ∈ Rρ1,ρ2. Then

(1) for every 0 < δ < 1, there exists a constant Cδ > 0 such that

(1− δ) inf
u∈H1

ρ(RN )

∫
RN |∇u|2ρ +

∫
RN

m
1−δ |u|

2ρ

|u|2
L2

ρ(RN )

− Cδ ≤ inf
u∈H1

ρ(RN )

< Au, u >L2
ρ(RN )

|u|2
L2

ρ(RN )

≤ (1 + δ) inf
u∈H1

ρ(RN )

∫
RN |∇u|2ρ +

∫
RN

m
1+δ |u|

2ρ

|u|2
L2

ρ(RN )

+ Cδ

(3.25)

and

− (1− δ)Σ0(−∆ +
m

1− δ
)− Cδ ≤ inf

u∈H1
ρ(RN )

∫
RN |∇u|2ρ +

∫
RN m(x)|u|2ρ∫

RN |u|2ρ

≤ −(1 + δ)Σ0(−∆ +
m

1 + δ
) + Cδ

(3.26)
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and Cδ →∞ as δ → 0.
(2) Considering the weight ρε(x) = ρ(εx),

−Σ0(−∆ + mI) = lim
ε→0

[
inf

u∈H1
ρε

(RN )

∫
RN |∇u|2ρε +

∫
RN m(x)u2ρε∫

RN |u|2ρε

]
= lim

ε→0

[
inf

u∈D(A)

< Au, u >ρε

|u|2ρε

]
.

Proof. To prove (3.25), observe that

< (−∆u + m(x)I)u, u >L2
ρ(RN )=

∫
RN

u ∇u∇ρ +
∫
RN

|∇u|2ρ +
∫
RN

m(x)|u|2ρ. (3.27)

By Young’s inequality, for every δ > 0 there exists Cδ with Cδ → 0 as δ → 0, such that∣∣∣∣ ∫
RN

u ∇u∇ρ

∣∣∣∣ ≤ δ

∫
RN

|∇u|2ρ + Cδ

∫
RN

|u|2ρ (3.28)

and substituting (3.28) in (3.27) and dividing by |u|2
L2

ρ(RN )
we get

(1− δ)

[ ∫
RN |∇u|2ρ +

∫
RN

m(x)
1−δ |u|

2ρ

]
|u|2

L2
ρ(RN )

− Cδ ≤
< Au, u >

|u|2
L2

ρ(RN )

≤

(1 + δ)

[ ∫
RN |∇u|2ρ +

∫
RN

m(x)
1+δ |u|

2ρ

]
|u|2

L2
ρ(RN )

+ Cδ.

Taking the inf H1
ρ (RN ) we get (3.25).

Now we prove (3.26). We take v = uρ
1
2 and we have that ∇u = −1

2 vρ
−3
2 ∇ρ + ρ

−1
2 ∇v. Hence∫

RN

|∇u|2ρ +
∫
RN

m(x)|u|2ρ =
∫
RN

|∇v|2 +
∫
RN

m(x)|v|2

+
∫
RN

1
4
|v|2 |∇ρ|2

ρ2
− 2

∫
RN

v∇v
∇ρ

ρ
.

(3.29)

Now Cauchy-Schwartz’s and Young’s inequalities give, for every δ > 0∣∣∣∣2 ∫
RN

v∇v
∇ρ

ρ

∣∣∣∣ ≤ 2
∫
RN

v|∇v|C1 ≤ δ

∫
RN

|∇v|2 + Cδ

∫
RN

|v|2 (3.30)

and ∣∣∣∣14
∫
RN

|v|2|∇ρ

ρ
|2 dx

∣∣∣∣ ≤ C0

4

∫
RN

|v|2 dx. (3.31)

Replacing (3.30), (3.31) in (3.29)

(1− δ)
[
∫
RN |∇v|2 +

∫
RN

m(x)
1−δ |v|

2]
|v|2

L2(RN )

+ (
−1
4

C0 − Cδ) ≤
∫
RN |∇u|2ρ +

∫
RN m(x)|u|2ρ

|u|2
L2

ρ(RN )

≤ (1 + δ)

∫
RN |∇v|2 +

∫
RN

m(x)
1+δ |v|

2

|v|2
L2(RN )

+ (
C0

4
+ Cδ)

(3.32)
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Taking the inf and considering that the set of u ∈ H1
ρ (RN ) is equivalent to the set of v ∈ H1(RN ),

where v = uρ
1
2 , we have

− (1− δ)Σ0(−∆ +
m

1− δ
) + (

−1
4

C0 − Cδ) ≤ inf
u∈H1

ρ(RN )

∫
RN |∇u|2ρ +

∫
RN m(x)|u|2ρ

|u|2
L2

ρ(RN )

≤ −(1 + δ)Σ0(−∆ +
m

1 + δ
) + (

C0

4
+ Cδ) (3.33)

which proves (3.26).

Now we prove part (2). Again setting v = uρ
1
2
ε we get (3.29) with weight ρε. Now, instead

of (3.30), by Lemma 2.3 we get∣∣∣∣2 ∫
RN

v ∇v
∇ρε

ρε

∣∣∣∣ ≤ ε

∫
RN

|v||∇v| ≤ ε

∫
RN

|v|2 dx + ε

∫
RN

|∇v|2

and instead of (3.31) ∣∣∣∣ ∫
RN

|v|2|∇ρε

ρε
|2

∣∣∣∣ ≤ ε2

∫
RN

|v|2.

Thus, instead of (3.32) we get

(1− ε)
[ ∫

RN

|∇v|2 +
∫
RN

m(x)
1− ε

|v|2
]

+ (−ε2

4
− ε) ≤

∫
RN

|∇u|2ρε +
∫
RN

m(x)|u|2ρε

≤ (1 + ε)
[ ∫

RN

|∇v|2 +
∫
RN

m(x)
1 + ε

|v|2
]

+ (
ε2

4
+ ε).

Taking the inf, as in the first part of the Theorem, instead of (3.33) we end up with

− (1− ε)Σ0(−∆ +
m

1− ε
I) + (−ε2

4
− ε) ≤ (1− ε) inf

v∈H1(RN )

[
∫
RN |∇v|2 +

∫
RN

m(x)
1−ε |v|

2]∫
RN |v|2

+(−ε2

4
− ε) ≤ inf

H1
ρε (RN )

∫
RN |∇u|2ρε +

∫
RN m(x)|u|2ρε∫

RN |u|2ρε
≤ −(1 + ε)Σ0(−∆ +

mI

1 + ε
) + (

ε2

4
+ ε)

(3.34)

and taking limits as ε → 0, using the continuity of the exponential type Σ0(−∆ + λmI) given
in Lemma 3.8 we obtain the first part of (2).

For the second part of (2) observe that

< Au, u >L2
ρ(RN )=

∫
RN

|∇u|2ρε +
∫
RN

m(x)|u|2ρε +
∫
RN

u∇u∇ρε.

By Lemma 2.3 and Cauchy Schwartz inequality, the right hand side above is bounded by∣∣∣∣ ∫
RN

u∇u∇ρε dx

∣∣∣∣ ≤ ε

( ∫
RN

|u|2ρε +
∫
RN

|∇u|2ρε

)
.
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From this inequality we get

(1− ε) inf
u∈H1

ρε
(RN )

[
∫
RN |∇u|2ρε +

∫
RN

m(x)
1−ε |u|

2 ρε]∫
RN |u|2 ρε

− ε

≤ inf
u∈H1

ρε
(RN )

< Au, u >L2
ρ(RN )∫

RN |u|2ρε
≤

≤ (1 + ε) inf
u∈H1

ρε (RN )

[
∫
RN |∇u|2ρε +

∫
RN

m(x)
1+ε |u|

2ρε]∫
RN |u|2ρε

+ ε.

Using (3.34)

−(1− ε)2(1− ε)Σ0(−∆ +
m

(1− ε)2
I) + (−ε2

4
− ε)(1− ε)− ε

≤ (1− ε) inf
u∈H1

ρε (RN )

[
∫
RN |∇u|2ρε +

∫
RN

m(x)
1−ε |u|

2 ρε]∫
RN |u|2 ρε

− ε

≤ inf
< Au, u >L2

ρ(RN )∫
RN |u|2ρε

≤

≤ (1 + ε) inf
u∈H1

ρε (RN )

[
∫
RN |∇u|2ρε +

∫
RN +m(x)

1+ε |u|
2ρε]∫

RN |u|2ρε
+ ε

= −(1 + ε)2Σ0(−∆ +
m

(1 + ε)2
I) + (

ε2

4
+ ε)(1 + ε) + ε.

Taking limits as ε → 0 and considering the continuity of the exponential type of the operator
−∆ + λm(x) as in Lemma 3.8 we get the result.

Now we give the following consequence of the previous results.

Corollary 3.14. Assume m ∈ Lσ
U (RN ), σ > N

2 and σ > 2, ρ ∈ Rρ1,ρ2. Then there exists
µ = µ(m) ∈ R depending only on ρ1, ρ2 but independent of the particular weight ρ, such that
(i)

∫
RN |∇φ(x)|2ρ(x) +

∫
RN m(x)φ(x)2ρ(x) ≥ µ

∫
RN φ(x)2ρ(x),

(ii) λ → µ(λm) is continuous.

Proof. From (3.26), using Proposition 3.13, taking δ = 1
2 , we get that we can take µ(m) =

−1
2 Σ0(−∆ + 2mI)− C. This gives µ(λm) = CΣ0(−∆ + 2λmI)− C, but since −Σ0(−∆ + λm)

is continuous in λ, we get the result.

4 Local and global existence and uniform bounds of solutions
for nonlinear problems.

Now we study the local and global existence and regularity of the following reaction diffusion
equation in the space X = Lq

ρ(RN ), with 1 < q < ∞,{
ut −∆u = f(x, u), with x ∈ RN , t > 0
u(0) = u0,

(4.1)

where ρ ∈ Rρ1,ρ2 .
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Theorem 4.1. Let 1 < q < ∞. Consider problem (4.1) with u0 ∈ H1,q
ρ (RN ), where ρ ∈ Rρ1,ρ2.

We assume the nonlinear part can be written as

f(x, u) = g(x) + m(x)u + f0(x, u)

in such a way that g ∈ Lq
ρ(RN ), m ∈ Lσ

U (RN ) with σ > N
2 , σ > q, and f0 satisfies,{

f0(x, 0) = 0, ∂f0

∂s (x, 0) = 0

| ∂
∂sf0(x, s)| ≤ C(1 + |sρ

1
q (x)|r−1), s ∈ R, x ∈ RN

(4.2)

with 1 ≤ r

{
< ∞, if N ≤ q

≤ N
N−q , if N > q.

(4.3)

Then there exists a unique solution of (4.1) given by the variations of constants formula,

u(t, u0) = S(t)u0 +
∫ t

0
S(t− s)(g + fe

0 (u(s))) ds, t ∈ [0, τ0) (4.4)

where S(t) denotes the linear analytic semigroup genated by ∆ + m(x)I in Lq
ρ(RN ), that is

S(t) = e(∆+m(x)I)t, and [0, τ0) is the maximal existence interval of the solution. Moreover the
solution satisfies, for every γ ∈ [0, 1)

u(., u0) ∈ C([0, τ0),H1,q
ρ (RN )) ∩ C((0, τ0),H2,q

ρ (RN )) ∩ C1((0, τ0),H2γ,q
ρ (RN )).

Here H2γ,q
ρ (RN ), with γ ∈ [0, 1), denotes the fractional power spaces of the operator −∆ in

Lq
ρ(RN ).

Proof. We will use Theorem 3.3.3 in [20], page 54 in the base space X = Lq
ρ(RN ) and with

X
1
2 = H1,q

ρ (RN ). Since g ∈ Lq
ρ(RN ), it is enough to prove that fe

0 : H1,q
ρ (RN ) → Lq

ρ(RN ) is
Lipschitz on bounded sets.

First we are going to prove that the Nemitcky operator associated to f0 transforms H1,q
ρ (RN )

into Lq
ρ(RN ). Thus, if u ∈ H1,q

ρ (RN ), using the weighted Sobolev embeddings in Lemma 2.12,
u ∈ Lp

ρ
p
q
(RN ) and

∫
RN

|u(x)|pρ(x)
p
q dx ≤ ‖u‖p

H1,q
ρ (RN )

, with q ≤ p

{
< ∞, if N ≤ q

≤ qN
N−q , if 1 ≤ q < N.

(4.5)

Now, by (4.2) we have,∫
RN

|f0(x, u(x))|qρ(x) dx ≤ C

∫
RN

(1 + |u(x)|q(r−1)ρ(x)r−1)|u(x)|qρ(x) dx

that is ∫
RN

|f0(x, u(x))|qρ(x) dx ≤ C

∫
RN

|u(x)|qρ(x) dx + C

∫
RN

|u(x)|qrρ(x)r dx. (4.6)

The first integral in the right hand side is finite since u ∈ Lq
ρ(RN ), while the second one is also

finite by (4.5) and (4.3).
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Now we prove that the Nemitcky operator is Lipschitz on bounded sets. Let u, v ∈ H1,q
ρ (RN )

with ‖u‖
H1,q

ρ (RN )
, ‖v‖

H1,q
ρ (RN )

≤ R for some R > 0. Using again (4.2),

|f0(x, u(x))− f0(x, v(x))| ≤ C(1 + |u(x)|r−1ρ(x)
r−1

q + |v(x)|r−1ρ(x)
r−1

q )|v(x)− u(x)|

and then
‖fe

0 (u)− fe
0 (v)‖q

Lq
ρ(RN )

≤ C1

∫
RN

|v(x)− u(x)|qρ(x) dx+

+C1

∫
RN

ρ(x)r−1(|u(x)|q(r−1) + |v(x)|q(r−1))|v(x)− u(x)|qρ(x) dx.

In the second integral we use Hölder’s inequality, with 1 < s, s′ < ∞ such that 1
s + 1

s′ = 1,∫
RN

ρ(x)r−1(|u(x)|q(r−1) + |v(x)|q(r−1))|v(x)− u(x)|qρ(x) dx ≤

≤ C2

[ ∫
RN

ρ(x)s(r−1)|u(x)|qs(r−1) +
∫
RN

ρ(x)s(r−1)|v(x)|qs(r−1)

] 1
s

.‖(v − u)ρ
1
q ‖q

Lqs′ (RN )

= C2

[
‖u‖qs(r−1)

L
qs(r−1)

ρs(r−1)

+ ‖v‖qs(r−1)

L
qs(r−1)

ρs(r−1)

] 1
s

‖v − u‖q

Lqs′

ρs′ (R
N )

.

To use (4.5) we need q ≤ qs(r − 1) ≤ qN
N−q and q ≤ qs′ ≤ qN

N−q , if 1 ≤ q < N . Hence, if

1 ≤ q < N , we take s′ = N
N−q and then s = N

q and qs(r − 1) ≤ qN
N−q , since r ≤ N

N−q . On the
other hand, if N ≤ q, we take s arbitrary. In such a case we get

‖fe
0 (u)− fe

0 (v)‖q
Lq

ρ(RN )
≤ C3‖v − u‖q

H1,q
ρ (RN )

+ C3

[
‖u‖qs(r−1)

H1,q
ρ (RN )

+ ‖v‖qs(r−1)

H1,q
ρ (RN )

] 1
s

‖v − u‖q

H1,q
ρ (RN )

.

Since, u, v ∈ H1,q
ρ (RN ), with ‖u‖

H1,q
ρ (RN )

, ‖v‖
H1,q

ρ (RN )
≤ R, we get

‖fe
0 (u)− fe

0 (v)‖Lq
ρ(RN ) ≤ C4(R)‖v − u‖

H1,q
ρ (RN )

.

Remark 4.2. In the present work we are not focussing on the issue of critical exponents and
optimal growth condition on the nonlinearities to obtain a local well posed problem and actually,
the exponents from (4.3) are not optimal. As a matter of fact, using the arguments developed
in [4] and further extended in [5], an existence and uniqueness theorem can be obtaind when the
nonlinearity f0 satisfies (4.2) where 1 ≤ r < ∞ if N ≤ q and 1 ≤ r ≤ N+q

N−q if N > q.

Now we will show some dissipativity conditions that guarantee the global existence of solu-
tions of (4.1).

Theorem 4.3. Assume 1 < q < ∞. Under the assumptions of Theorem 4.1, assume that there
exists C ∈ Lσ

U (RN ) with σ > N
2 , σ > q, and 0 ≤ D ∈ Lq

ρ(RN ) such that the nonlinear term
satisfies

f(x, s)s ≤ C(x)|s|2 + D(x)|s|, for all s ∈ R, x ∈ RN . (4.7)

29



Then the solution of (4.1) with initial condition u0 ∈ H1,q
ρ (RN ) is globally defined.

Thus, (4.1) defines a nonlinear semigroup {T (t)}t≥0,

T (t) : H1,q
ρ (RN ) → H1,q

ρ (RN ) (4.8)

as T (t)u0 := u(t), where u(t) is the solution of (4.1) with data u0.

Proof. By Theorem 3.4 we have that ∆+C(x)I generates an order preserving analytic semigroup
in X = Lq

ρ(RN ), that we denote SC(t), which has the same fractional power spaces than −∆.
As D ∈ Lq

ρ(RN ), the linear problem{
Ut −∆U = C(x)U + D(x), x ∈ RN , t > 0
U(0) = |u0| ∈ H1,q

ρ (RN )
(4.9)

is well defined and has a unique solution, U(t, |u0|), which is given by the variations of constants
formula

U(t, |u0|) = SC(t)|u0|+
∫ t

0
SC(t− s)D(x)ds (4.10)

and satisfies U(·, |u0|) ∈ C([0,∞),H1,q
ρ (RN )) ∩ C((0,∞),H2,q

ρ (RN )), U(t, x) ≥ 0 for every x ∈
RN and t > 0, since D ≥ 0.

By comparison, we have
|u(t, u0)| ≤ U(t, |u0|) (4.11)

for all t > 0.
Now using the weighted Sobolev inclusions in Lemma 2.12, we obtain that for

q ≤ p

{
< ∞, if N ≤ q

≤ qN
N−q , if 1 ≤ q < N

we have

‖u(s)‖Lp

ρ
p
q

(RN ) ≤ ‖U(s)‖Lp

ρ
p
q

(RN ) ≤ C‖U(s)‖
H1,q

ρ (RN )

and from (4.10)

‖U(t, |u0|)‖H1,q
ρ (RN )

≤ ‖SC(t)|u0|‖H1,q
ρ (RN )

+
∫ t

0
‖SC(t− s)D(x)‖

H1,q
ρ (RN )

ds.

≤ Meµt‖u0‖H1,q
ρ (RN )

+ M‖D‖Lq
ρ(RN )

∫ t

0

eµ(t−s)

(t− s)
1
2

ds

for some µ ∈ R. Therefore, for all T > 0, if t ∈ [0, T ],

‖U(t, |u0|)‖H1,q
ρ (RN )

≤ K(T )
(
‖u0‖H1,q

ρ (RN )
+ ‖D‖Lq

ρ(RN )

)
(4.12)

for some K(T ) > 0.
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Using now the variations of constants formula we get estimates of u(t, u0) in H1,q
ρ (RN ). In

fact, using (4.4), we get, for some α ∈ R

‖u(t, u0)‖H1,q
ρ (RN )

≤ ‖e(∆+m(x)I)tu0‖H1,q
ρ (RN )

+
∫ t

0
‖e(∆+m(x)I)(t−s)(g + fe

0 (u(s)))‖
H1,q

ρ (RN )
ds

≤ Meαt‖u0‖H1,q
ρ (RN )

+ M

∫ t

0

eα(t−s)

(t− s)
1
2

‖g + fe
0 (u(s))‖Lq

ρ(RN ) ds.

Thus,

‖u(t)‖
H1,q

ρ (RN )
≤ Meαt‖u0‖H1,q

ρ (RN )
+ M sup

s∈[0,T ]
‖g + fe

0 (u(s))‖Lq
ρ(RN )

∫ t

0

eα(t−s)

(t− s)
1
2

ds

and then

‖u(t)‖
H1,q

ρ (RN )
≤ K(T )

(
‖u0‖H1,q

ρ (RN )
+ sup

s∈[0,T ]
‖g + fe

0 (u(s))‖Lq
ρ(RN )

)
. (4.13)

Using now (4.6)

‖g + fe
0 (u(s))‖q

Lq
ρ(RN )

≤ C‖g‖q
Lq

ρ(RN )
+ C(‖u(s)‖q

Lq
ρ(RN )

+ ‖u(s)‖qr
Lqr

ρr (RN )
),

≤ C‖g‖q
Lq

ρ(RN )
+ C(‖U(s)‖q

H1,q
ρ (RN )

+ ‖U(s)‖qr

H1,q
ρ (RN )

). (4.14)

Hence, by (4.12), we obtain that for s ∈ [0, T ], with T < ∞

‖g + fe
0 (u(s))‖Lq

ρ(RN ) ≤ C(T, ‖u0‖H1,q
ρ (RN )

, ‖g‖Lq
ρ(RN ), ‖D‖Lq

ρ(RN )).

Plugging this into (4.13) we obtain that for all 0 ≤ t ≤ T < ∞ we have

‖u(t)‖
H1,q

ρ (RN )
≤ C(T, ‖u0‖H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN ), ‖D‖Lq
ρ(RN )). (4.15)

Hence the solution is global in H1,q
ρ (RN ).

Now we show how an additional dissipativity condition allows us to obtain uniform bounds
on the solutions, independent of the initial data.

Theorem 4.4. Let 1 < q < ∞. Assume the nonlinear term in (4.1) satisfies conditions (4.2),
(4.7) with 0 ≤ D ∈ Lq

ρ(RN ), C ∈ Lσ
U (RN ), σ > N

2 , σ > q and that the analytic semigroup
in Lq

ρ(RN ) generated by ∆ + C(x)I, with domain H2,q
ρ (RN ) decays exponentially. Let 0 ≤ φ ∈

H2,q
ρ (RN ) be the unique solution of the elliptic problem

−∆φ = C(x)φ + D(x), x ∈ RN . (4.16)

Then the solution of (4.1) satisfies for q ≤ p < ∞

lim sup
t→∞

‖u(t, u0)‖Lp

ρ
p
q

(RN ) ≤ C(‖φ‖
H2,q

ρ (RN )
) (4.17)

and, if q > N
2 ,

lim sup
t→∞

‖u(t, u0)‖L∞

ρ
1
q

(RN ) ≤ C(‖φ‖
H2,q

ρ (RN )
) (4.18)
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and both limits are uniform for u0 in bounded sets of H1,q
ρ (RN ). Moreover for each 0 ≤ α < 1

lim sup
t→∞

‖u(t, u0)‖H2α,q
ρ (RN )

≤ Cα(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) (4.19)

and the limit is uniform for u0 in bounded sets of H1,q
ρ (RN ).

Moreover, if |u0(x)| ≤ φ(x) for all x ∈ RN then

|u(t, x, u0)| ≤ φ(x), for all x ∈ RN , t > 0.

Finally, if q > N
2 then, uniformly for u0 in bounded sets of H1,q

ρ (RN ), we have

lim sup
t→∞

|u(t, x, u0)| ≤ φ(x) (4.20)

where the limit is uniform on compact sets of RN if infx∈RN ρ(x) = 0, or uniformly in RN if
infx∈RN ρ(x) > 0.

Proof. Observe first that 0 ≤ φ ∈ H2,q
ρ (RN ) is well defined. Now we decompose the solution U

of (4.9) as U = v + φ, where φ is the solution of (4.16) and v satisfies the linear homogeneous
equation {

vt + (−∆− C(x)I)v = 0
v(0) = |u0| − φ,

that is, v(t) = e(∆+C(x)I)t(|u0| − φ), and satisfies for every 0 ≤ α ≤ 1

‖v(t)‖
H2α,q

ρ (RN )
≤ Me−at

tα
[‖u0‖Lq

ρ(RN ) + ‖φ‖Lq
ρ(RN )] (4.21)

for some a > 0. Therefore,

‖U(t)‖
H2α,q

ρ (RN )
≤ ‖v(t)‖

H2α,q
ρ (RN )

+ ‖φ‖
H2α,q

ρ (RN )
. (4.22)

Taking the limsup we get, for each 0 ≤ α ≤ 1

lim sup
t→∞

‖U(t)‖
H

2α,q
ρ (RN )

≤ ‖φ‖
H

2α,q
ρ (RN )

, (4.23)

and the limit is uniform for u0 in bounded sets of H1,q
ρ (RN ).

Using this estimate and (4.11) and the Sobolev embeddings in Lemma 2.12, we obtain (4.17)
and (4.18).

Moreover, if |u0(x)| ≤ φ(x) for all x ∈ RN , then v(t, x) ≤ 0 in RN and |u(t, x, u0)| ≤
U(t, x, |u0|) ≤ φ(x) in RN .

Also, if q > N
2 , taking 2α > N

q in (4.21), we get that v(t) tends to zero in L∞
ρ

1
q
(RN ). This

implies the convergence to zero on compact sets in RN if infx∈RN ρ(x) = 0, or uniform in RN if
infx∈RN ρ(x) > 0. From this and (4.11), we get (4.20).

Finally, if B ⊂ H1,q
ρ (RN ) is a bounded set of intial data, with α = 1

2 in (4.23), we get in
particular

lim sup
t→∞

‖u(t, u0)‖Lp

ρ
p
q

(RN ) ≤ C(‖φ‖
H1,q

ρ (RN )
) (4.24)
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for q ≤ p

{
< ∞, if N ≤ q

≤ qN
N−q , if 1 ≤ q < N

, and from this, by (4.14) and (4.23)

lim sup
t→∞

‖g + fe
0 (u)‖Lq

ρ(RN ) ≤ C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )). (4.25)

On the other hand, taking λ large enough such that the linear semigroup generated by
∆ + m(x)I − λI decays exponentially in Lq

ρ(RN ), we consider, instead of (4.1),

ut −∆u−m(x)u + λu = g(x) + λu + f0(x, u).

Using the corresponding variation of constants formula, we have

u(t + 1, u0) = Sλ(1)u(t) +
∫ t+1

t
Sλ(t + 1− s)(g + λu(s) + fe

0 (u(s))) ds (4.26)

where Sλ(t) denotes the linear semigroup generated by ∆ + m(x)I − λI.
Taking the norm in H2α,q

ρ (RN ) in (4.26), we get that for 0 ≤ α < 1 and some b > 0

‖u(t + 1, u0)‖H2α,q
ρ (RN )

≤ e−b‖u(t)‖Lq
ρ(RN ) +

∫ t+1

t

e−b(t+1−s)

(t + 1− s)α
‖g + λu(s) + fe

0 (u(s))‖Lq
ρ(RN ) ds

(4.27)
Let C(‖φ‖

H1,q
ρ (RN )

, ‖g‖Lq
ρ(RN )) the largest of the constants in (4.24) and (4.25), then, tak-

ing for example C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) + 1, and given a set of initial data B, bounded in

H1,q
ρ (RN ), by (4.24) and (4.25) there exists T = T (B) > 0 such that ‖u(t, u0)‖Lp

ρ
p
q

(RN ) ≤ C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) + 1,

‖g + λu(t) + fe
0 (u(t))‖Lq

ρ(RN ) ≤ C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) + 1

for all t ≥ T (B).
Substituting this estimate in (4.27) we get that, for all t ≥ T (B)

‖u(t + 1, u0)‖H2α,q
ρ (RN )

≤ e−b [C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) + 1]

+ [C(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )) + 1]
∫ t+1

t

e−b(t+1−s)

(t + 1− s)α
ds.

Since
∫ t+1
t

e−b(t+1−s)

(t+1−s)α ds =
∫ 1
0

e−b(1−s)

(1−s)α ds = Lα, we conclude that for each 0 ≤ α < 1 and for all
t ≥ T (B) + 1

‖u(t, u0)‖H2α,q
ρ (RN )

≤ Cα(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN )). (4.28)

Hence, for each 0 ≤ α < 1 we get (4.19).

Note that inequality (4.28) implies that the ball

B0,α = {u ∈ H2α,q
ρ (RN ) : ‖u‖

H2α,q
ρ (RN )

≤ Cα(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN ))}

is an absorbing ball in H2α,q
ρ (RN ) for 1

2 ≤ α < 1, for the nonlinear semigroup {T (t)}t≥0,
although it is not positively invariant. The next result allows us to find a bounded, absorbing
and positively invariant set.
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Lemma 4.5. There exists a bounded set B̂0,α in H2α,q
ρ (RN ) positively invariant, that is, T (t)B̂0,α ⊂

B̂0,α, t ≥ 0 and absorbing, that is, for each bounded set B in H1,q
ρ (RN ) there exists t0(B) > 0

such that T (t)B ⊂ B̂0,α, for all t ≥ t0(B).

Proof. We define

B̂0,α := ∪t≥0T (t)B0,α

which is positively invariant for {T (t)}t≥0. In fact, if z ∈ B̂0,α then there exists τ0 ≥ 0 such that
z ∈ T (τ0)B0,α and then z = T (τ0)b0, with b0 ∈ B0,α. Hence, we have T (t)z = T (t)T (τ0)b0 =
T (t + τ0)b0 ∈ ∪t≥0T (t)B0,α = B̂0,α, for all t ≥ 0.

Thus, B̂0,α satisfies the statement.

5 Asymptotic compactness and the global attractor

In this section we prove that the nonlinear semigroup {T (t)}t≥0 obtained above is compact when
t goes to infinity, that is, we prove the asymptotic compactness, see [19].

Definition 5.1. A semigroup {T (t)}t≥0 in a Banach space X is said asymptotically compact in
a Banach space Y if and only if for any sequence of initial data, bounded in X, {un

0}, and for
any sequence tn → +∞ then {T (tn)un

0}n≥1 has a converging subsequence in Y .

We first show the asymptotic compactness of {T (t)}t≥0 in Lq
ρ(RN ). Then we will use the vari-

ations of constants formula to conclude that {T (t)}t≥0 is asymptotically compact in H2α,q
ρ (RN ),

for any 0 ≤ α < 1.

Theorem 5.2. Under the assumptions in Theorem 4.4, the nonlinear semigroup {T (t)}t≥0 in
H1,q

ρ (RN ) defined by (4.1) is asymptotically compact in Lq
ρ(RN ).

Proof. Take {un
0} a bounded set of initial conditions in H1,q

ρ (RN ) and tn →∞. We show now
that for each ε > 0 there exists k = k0(ε) > 0, n0(ε) such that for all k ≥ k0, n > n0(ε)∫

|x|>k
|u(tn, un

0 )|qρ(x) dx < ε, (5.1)

that is, the solutions of (4.1) are asymptotically, uniformly small in the sense of Lq
ρ(RN ).

In fact, for ε > 0 fixed, using that from (4.21), v(t, x) = v(t, x, |u0| − φ), converges exponen-
tially to zero in Lq

ρ(RN ) as t → +∞, and the convergence is uniform for u0 ∈ B, where B is
a bounded set in H1,q

ρ (RN ), we obtain that there exists t0(ε, B) such that for all t ≥ t0(ε) and
u0 ∈ B

‖v(t)‖q
Lq

ρ(RN )
< ε. (5.2)

From the integrability of φ ∈ Lq
ρ(RN ), see Theorem 4.4, there exists k0(ε) such that for all

k ≥ k0(ε) ∫
|x|>k

|φ(x)|qρ(x) dx ≤ ε. (5.3)
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Using (5.2), (5.3), (4.11) and (4.22) with α = 0, we get that for all t ≥ t0 = t0(ε, B), and all
k ≥ k0 = k0(ε),∫

|x|>k
|u(t, u0)|qρ(x) dx ≤ C

( ∫
|x|>k

|v(t)|qρ(x) dx +
∫
|x|>k

|φ(x)|qρ(x) dx

)
≤ C

( ∫
RN

|v(t)|qρ(x) dx +
∫
|x|>k

|φ(x)|qρ(x) dx

)
≤ 2εC (5.4)

and we get (5.1).
Denote, for k > 0, Ωk = B(0, k). Then we now show that {u(tn, un

0 )|Ωk
}n≥1 is a precompact

set in Lq(Ωk). In fact, {u(tn, un
0 )|Ωk

} is bounded in H1,q(Ωk) and by the compactness of the
inclusion H1,q(Ωk) ↪→ Lq(Ωk) we conclude that {u(tn, un

0 )|Ωk
} is precompact.

To end the proof, we show that for every ε > 0 there exists a finite covering in Lq
ρ(RN ) of

the set {u(tn, un
0 )}n≥1 by balls of radius not larger than Cε

1
q , for some positive constant C.

For this, let ε > 0, k(ε) and n ≥ n0(ε) be as in (5.1). Since {u(tn, un
0 )|Ωk(ε)

} is precompact in

Lq(Ωk(ε)), we have that {u(tn, un
0 )|Ωk(ε)

}n≥1 ⊂ ∪m
i=1B(wi, εi), where wi ∈ Lq(Ωk(ε)) and εi ≤ ε

1
q .

Define ŵi as the extension by 0 of wi to RN , that is,

ŵi(x) =
{

wi(x), if x ∈ Ωk(ε)

0, if, x /∈ Ωk(ε).

We now show that {u(tn, un
0 )}n≥n0 ⊂ ∪m

i=1B(ŵi, Cε
1
q ), for some constants C. In fact, if z ∈

{u(tn, un
0 )}n≥n0 then there exists j with 1 ≤ j ≤ m, such that ‖z − wj‖Lq(Ωk(ε)) < εj . Hence,

‖z − ŵj‖q
Lq

ρ(RN )
≤ ‖z‖q

Lq
ρ(RN\Ωk(ε))

+ C(ρ)‖z − ŵj‖q
Lq(Ωk(ε))

≤ ε + C(ρ)εq
j = Cε.

Now we use the variations of constants formula and the regularity of the semigroup to improve
Theorem 5.2, proving the asymptotic compactness in the spaces H2α,q

ρ (RN ), with 1
2 ≤ α < 1.

Before, we state a previous result.

Lemma 5.3. The nonlinear semigroup {T (t)}t≥0 in H1,q
ρ (RN ), defined by (4.1) satisfies that

for any bounded set B in H1,q
ρ (RN ), for all T > 0 and any 0 < t ≤ T < ∞, 1

2 ≤ α < 1,

‖T (t)u− T (t)v‖
H2α,q

ρ (RN )
≤ L(T,B)

tα
‖u− v‖Lq

ρ(RN ) for u, v ∈ B.

Proof. Fix 1
2 ≤ α < 1. By the variations of constants formula

T (t)u = e(∆+m(x)I)tu +
∫ t

0
e(∆+m(x)I)(t−s)(fe

0 (T (s)u) + g) ds.

Then, if u, v ∈ B is bounded in H1,q
ρ (RN ), t > 0,

T (t)u− T (t)v = e(∆+m(x)I)t(u− v) +
∫ t

0
e(∆+m(x)I)(t−s)[fe

0 (T (s)u)− fe
0 (T (s)v)] ds.
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Taking the norm in H2α,q
ρ (RN ) and using the smoothing of the linear semigroup, we get

‖T (t)u− T (t)v‖
H2α,q

ρ (RN )
≤ eµt

tα
‖u− v‖Lq

ρ(RN ) +
∫ t

0

eµ(t−s)

(t− s)α
‖fe

0 (T (s)u)− fe
0 (T (s)v)‖Lq

ρ(RN ) ds

≤ eµt

tα
‖u− v‖Lq

ρ(RN ) + C0(B, T )
∫ t

0

eµ(t−s)

(t− s)α
‖T (s)u− T (s)v‖

H2α,q
ρ (RN )

ds

for some µ ∈ R, for all T > 0, if 0 ≤ t ≤ T < ∞.
Note that we have used in the last inequality that fe

0 : H1,q
ρ (RN ) → Lq

ρ(RN ) is Lipschitz on
bounded sets, see Theorem 4.1, that α ≥ 1

2 , B is bounded in H1,q
ρ (RN ), and the estimates in

H1,q
ρ (RN ) for the solutions on bounded time intervals, see (4.15).

With all these, for u, v ∈ B, B bounded in H1,q
ρ (RN ),

‖T (t)u− T (t)v‖
H2α,q

ρ (RN )
≤ C1

tα
‖u− v‖Lq

ρ(RN ) + C2

∫ t

0

1
(t− s)α

‖T (s)u− T (s)v‖
H2α,q

ρ (RN )
ds

for 0 ≤ t ≤ T , where C1 = C1(T ), C2 = C2(T,B).
Using the singular Gronwall lemma, see [28] page 88, there exists L(T,B) such that

‖T (t)u− T (t)v‖
H2α,q

ρ (RN )
≤ L(T,B)

tα
‖u− v‖Lq

ρ(RN ), in (0, T ].

We then have

Theorem 5.4. Assume the hypotheses in Theorem 4.4. The nonlinear semigroup {T (t)}t≥0 in
H1,q

ρ (RN ) defined by (4.1) is asymptotically compact in H2α,q
ρ (RN ), for any 0 ≤ α < 1.

Proof. Let {un
0} be a bounded sequence of initial data in H1,q

ρ (RN ) and tn → +∞. Let τ∗ > 0
be fixed. Since {un

0} is bounded in H1,q
ρ (RN ) and tn − τ∗ → +∞ then by the asymptotic

compactness in Lq
ρ(RN ) there exists a subsequence of {u(tn − τ∗, un

0 )}n≥1, that we denote the
same, which is of Cauchy type in Lq

ρ(RN ). Denote wn
0 := u(tn− τ∗, un

0 ). By the uniform bounds
in (4.28), we have that for sufficiently large n, {wn

0 } is bounded in H2α,q
ρ (RN ). Hence, we now

show that u(tn, un
0 ) = T (τ∗)wn

0 is of Cauchy type in H2α,q
ρ (RN ). For this, taking u = wn

0 and
v = wm

0 , the previous Lemma gives

‖u(tn, un
0 )− u(tm, um

0 )‖
H2α,q

ρ (RN )
= ‖T (τ∗)wn

0 − T (τ∗)wm
0 ‖H2α,q

ρ (RN )
≤ L

(τ∗)α
‖wn

0 − wm
0 ‖Lq

ρ(RN )

(5.5)

But as {wn
0 }n≥1 is of Cauchy type in Lq

ρ(RN ), from (5.5) we obtain that u(tn, un
0 ) = {T (τ∗)wn

0 }n≥1

is of Cauchy type in H2α,q
ρ (RN ).

From the previous results, the nonlinear semigroup {T (t)}t≥0 in H1,q
ρ (RN ) has a bounded

absorbing set in H1,q
ρ (RN ) and is asymptotically compact. Then from [19], the semigroup

{T (t)}t≥0 has a global attractor A in H1,q
ρ (RN ), which satisfies

(i) A is compact in H1,q
ρ (RN )

(ii) A is invariant, T (t)A = A, ∀t ≥ 0.
(iii) A attracts each bounded set of H1,q

ρ (RN ). Additionally, it is maximal in the class of
bounded invariant sets in H1,q

ρ (RN ).
Now we give additional regularity properties of the attractor.
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Theorem 5.5. Consider A the global attractor of (4.1) in H1,q
ρ (RN ). Then

(1) A ⊂ H2α,q
ρ (RN ), 0 ≤ α < 1 and is bounded.

(2) A attracts bounded sets of H1,q
ρ (RN ) in the norm of H2α,q

ρ (RN )

Proof. (1) By (4.19), for each 0 ≤ α < 1

lim sup
t→∞

‖u(t, u0)‖H2α,q
ρ (RN )

≤ Cα(‖φ‖
H1,q

ρ (RN )
, ‖g‖Lq

ρ(RN ))

uniformly for u0 ∈ B, a bounded set of H1,q
ρ (RN ). Now take B = A and then there exists

T ∗ = T ∗(A) such that for every t ≥ T ∗ we have ‖T (t, u0)‖H2α,q
ρ (RN )

≤ Cα + 1 with u0 ∈ A.

Using the invariance of the attractor we get ‖A‖
H2α,q

ρ (RN )
≤ Cα + 1. Thus, A ⊂ H2α,q

ρ (RN ), for
each 0 ≤ α < 1 and is bounded.

(2) We now that A attracts bounded sets of H1,q
ρ (RN ) in the norm of H1,q

ρ (RN ), that is, if B
is bounded in H1,q

ρ (RN ) then dist
H1,q

ρ (RN )
(T (t)B,A) → 0, as t →∞. That is for each {bn} ⊂ B

and {tn} → ∞, there exists a sequence {an} ⊂ A, such that, as n →∞,

‖T (tn)bn − an‖H1,q
ρ (RN )

→ 0. (5.6)

Let us now show that if B is bounded in H1,q
ρ (RN ) then dist

H2α,q
ρ (RN )

(T (t)B,A) → 0 as
t → ∞. We argue by contradiction. Assume there exists ε > 0, a sequence {tn}n≥1, tn → ∞
such that for each {an}n≥1 ⊂ A and {bn}n≥1 ⊂ B, we have

‖T (tn)bn − an‖H2α,q
ρ (RN )

> ε. (5.7)

Let ε and {tn} as in (5.7) and let t∗ be fixed. By (5.6) applied to tn− τ∗ → +∞, there exists
{an}n≥1 ⊂ A, and a sequence {bn}n≥1 ⊂ B such that

‖T (tn − t∗)bn − an‖H1,q
ρ (RN )

→ 0.

Denoting, b̂n := T (tn− t∗)bn and ˆ̂an = T (t∗)an ∈ A, by Lemma 5.3 we have that there exists
L > 0 such that for every n ∈ N

‖T (tn)bn − ˆ̂an‖H2α,q
ρ (RN )

= ‖T (t∗)b̂n − T (t∗)an‖H2α,q
ρ (RN )

≤ L(T )
1

(t∗)α
‖b̂n − an‖Lq

ρ(RN )
n→∞→ 0

which contradicts (5.7).

With these we can prove

Theorem 5.6. (i) The nonlinear semigroup {T (t)}t≥0 constructed above is well defined in
H2α,q

ρ (RN ) for 1
2 ≤ α < 1.

(ii) There exists a bounded absorbing set in H2α,q
ρ (RN ).

(iii) {T (t)}t≥0 is asymptotically compact in H2α,q
ρ (RN ).

Therefore, {T (t)}t≥0 has a global attractor in H2α,q
ρ (RN ), 1

2 ≤ α < 1 which is independent
of α and coincides with the attractor in H1,q

ρ (RN ).
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Proof. Part (i) is immediate. Part (ii) is given by Lemma 4.5. For (iii) see Theorem 5.4. Last
part is obtained from [19], since the attractor in H2α,q

ρ (RN ) denoted Aα, exists. Since A and
Aα are bounded and invariant in H2α,q

ρ (RN ) for α ≥ 1
2 then, by the maximality of Aα we get

A ⊂ Aα. Analogously, A, Aα are bounded and invariant in H1,q
ρ (RN ) and then the maximality

of A in H1,q
ρ (RN ) we get Aα ⊂ A. Hence, A = Aα.

Finally, we now prove that the attractor constructed above has extremal equilibria, see
[25, 26, 13].

Theorem 5.7. Under the assumption of Theorem 4.4, there exist two extremal ordered equilibria
ϕm ≤ ϕM , ϕm, ϕM ∈ H2,q

ρ (RN ), such that

ϕm(x) ≤ lim inf
t→∞

u(t, x;u0) ≤ lim sup
t→∞

u(t, x;u0) ≤ ϕM (x) (5.8)

for x ∈ RN and uniformly on bounded sets of initial data in H1,q
ρ (RN ). The attractor of (4.1)

satisfies
A ⊂ [ϕm, ϕM ], ϕm, ϕM ∈ A.

Moreover, ϕM is globally asymptotically stable form above in H1,q
ρ (RN ) and ϕm is so from below.

In particular, any equilibrium (4.1) stays between the two extremal equilibria.
If we assume additionaly that q > N

2 , then (5.8) holds uniformly in compact sets of RN if
infx∈RN ρ(x) = 0, or uniformly in RN if infx∈RN ρ(x) > 0.

Proof. Observe that 0 ≤ φ in (4.16) is a supersolution for (4.1) since

−∆φ = C(x)φ + D(x) ≥ f(x, φ).

Hence, the solution of (4.1) with initial data φ satisfies T (t)φ ≤ φ and therefore it is decreasing
in time. As the semigroup is asymptotically compact, the ω–limit set of this trajectory is a
unique equilibrium point, that is

lim
t→∞

T (t)φ = ϕM in H1,q
ρ (RN ).

Let B ∈ H1,q
ρ (RN ) a bounded set of intial data. Then for every u0 ∈ B we have (4.11), that

is
|u(t, u0)| ≤ U(t, |u0|)

and U(t) = φ + v(t), where v(t) → 0 in H1,q
ρ (RN ), as t →∞, uniformly in u0 ∈ B, see (4.21).

In particular, for each t > 0, u(t, x, u0) ≤ U(t, x, |u0|) and using the nonlinear semigroup at
time s > 0 we have

u(t + s, x, u0) = T (s)u(t, x, u0) ≤ T (s)U(t, x, |u0|).

Passing to the limit as t →∞ and using the continuity of the nonlinear semigroup in H1,q
ρ (RN )

we get
lim sup

t→∞
u(t, x;u0) ≤ T (s)φ(x)

for x ∈ RN . Taking now the limit s → ∞ we get the last inequality in (5.8), uniformly in
u0 ∈ B.
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Arguing with −φ and using u(t, x, u0) ≥ U(t, x,−|u0|), we get the minimal equilibrium ϕm

and we obtain (5.8).
Finally, if q > N

2 observe that by Theorems 5.5 and 5.6 we can repeat the arguments above,
using now the convergence and the conibuity of the semigroup in H2α,q

ρ (RN ) with α < 1. Also,
by the Sobolev inclusions in Lemma 2.12 this convergence implies convergence in L∞

ρ
1
q
(RN ). This

convergence, in turn, implies uniform convergence in compact sets of RN if infx∈RN ρ(x) = 0,
or uniformly in RN if infx∈RN ρ(x) > 0.

Now we test our results with the important model example of logistic equations. In fact we
have,

Proposition 5.8. Suppose that

f(x, s) = m(x)s− n(x)|s|r−1s, x ∈ RN , s ∈ R,

where r > 1,

m ∈ Lσ
U (RN ), σ >

N

2
and there exists

0 < ρ0 ∈ Rρ1,ρ2

such that
0 ≤ n(x) ≤ ρ0(x) for x ∈ RN .

Moreover, assume

1 ≤ r

{
< ∞, if N ≤ σ

≤ N
N−σ , if N

2 < σ < N.

Then for any q such that

q0(r) := max{N

r′
, 1} < q < σ,

the problem (4.1) is well posed in H1,q
ρ (RN ) where

ρ(x) = ρ0(x)
q

r−1 .

Proof. Note that with the notations in (4.2), we have f0(x, s) = −n(x)|s|r−1s and then
|f0(x, s)| ≤ |s|rρ(x)

r−1
q with ρ(x) = ρ0(x)

q
r−1 . Note that by Lemma 2.4 we have ρ ∈ RC,C

for some constant C. Also (4.3) is satisfied as soon as q > N
r′ . Finally the other restrictions in

Theorem 4.1, namely 1 < q < σ are satisfied due to the restrictions on r and σ in the statement.

Concerning the global existence and the asymptotic behavior note that we just need to prove
that (4.7) holds with 0 ≤ D ∈ Lq

ρ(RN ), C ∈ Lσ
U (RN ), σ > N

2 , σ > q and such that the analytic
semigroup in Lq

ρ(RN ) generated by ∆ + C(x)I, with domain H2,q
ρ (RN ) decays exponentially in

Lq
ρ(RN ). Hence we have
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Proposition 5.9. With the notations in Proposition 5.8, consider

q0(r) := max{N

r′
, 1} < q < σ,

and
ρ(x) = ρ0(x)

q
r−1 .

Assume there exists a decomposition

m(x) = m1(x) + m2(x), m2 ≥ 0

such that m1 ∈ Lσ
U (RN ), σ > N

2 , the analytic semigroup generated by ∆ + m1(x)I, decays
exponentially in Lq

ρ(RN ).
Assume moreover that

m2

n1/r
∈ Lqr′

ρ (RN ).

Then, Theorems 4.4, 5.2, 5.4, 5.5, 5.6 and 5.7 apply.

Proof. Note that, using Young’s inequality, we have

f(x, s)s ≤ m1(x)s2 + C
( m2(x)

n1/r(x)

)r′

|s|,

for some constant C > 0. Therefore (4.7) is satisfied with C(x) = m1(x) and D(x) a multiple

of
(

m2(x)

n1/r(x)

)r′

. Thus, with q and ρ(x) as in Proposition 5.8, we have that the conditions in the

statement guarantee that D ∈ Lq
ρ(RN ).

References

[1] F. Abergel. Existence and finite dimensionality of the global attractor for evolution equa-
tions on unbounded domains. J. Differential Equations, 83(1):85–108, 1990.

[2] H. Amann, Nonhomogeneous Linear and Quasilinear Elliptic and Parabolic Boundary Value
Problems, in: Schmeisser/Triebel: Function Spaces, Differential Operators and Nonlinear
Analysis, Teubner Texte zur Mathematik, 133 (1993), 9-126.

[3] H. Amann, M. Hieber, and G. Simonett. Bounded H∞-calculus for elliptic operators.
Differential Integral Equations, 7(3-4):613–653, 1994.

[4] J.M. Arrieta, A.N. Carvalho. Abstract Parabolic Equations with Critical Nonlinearities and
Applications to Navier-Stokes and Heat Equations Transactions of the American Mathe-
matical Society 352, pp. 285-310 (2000)
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